US009292212B2

a2z United States Patent (10) Patent No.: US 9,292,212 B2
Karzi et al. (45) Date of Patent: Mar. 22, 2016
(54) DETECTING STORAGE ERRORS IN A USPC e 714/6.22
DISPERSED STORAGE NETWORK See application file for complete search history.
(71) Applicant: (CULSP)]VERSAFE, INC., Chicago, IL. (56) References Cited
U.S. PATENT DOCUMENTS
(72) Inventors: Asimuddin Kazi, Naperville, IL (US);
Jason K. Resch, Chicago, IL (US) 4,092,732 A 5/1978 Ouchi
5,454,101 A 9/1995 Mackay et al.
H . : 3 : 5,485,474 A 1/1996 Rabin
(73) Assignee: g‘ﬁf;ﬁigiﬂﬁﬁlf;‘jlﬁfﬁsﬁ?fgg“ 5774643 A 6/1998 Lubbers et al.
’ ’ (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 249 days. Shamir; How to Share a Secret; Communications of the ACM; vol.
(21) Appl. No.: 13/890.438 22, No. 11; Nov. 1979; pp. 612-613.
’ (Continued)
(22) Filed: May 9, 2013
(65) Prior Publication Data Primary Examiner — Chae KO. . .
(74) Attorney, Agent, or Firm — Garlick & Markison;
US 2013/0346809 Al Dec. 26, 2013 Timothy W. Markison
Related U.S. Application Data
(57) ABSTRACT
(60) Provisional application No. 61/663,796, filed on Jun. . . .
25, 2012. A method begins by a dispersed storage (DS) processing
module detecting, in accordance with a rebuilding process, a
(51) Int.Cl. storage error of an encoded data slice stored in a storage node
GO6F 1107 (2006.01) of a dispersed storage network (DSN) and identifying the
GO6F 3/06 (2006.01) encoded data slice for rebuilding. The method continues with
GO6F 11/10 (2006.01) the DS processing module identifying one or more storage
GO6F 1108 (2006.01) traits associated with the encoded data slice and identifying
GOGF 11/00 (2006.01) encoded data slices having at least one storage trait in com-
(52) US.CL mon with the one or more storage traits of the encoded data
CPC .. GOG6F 3/0619 (2013.01); GO6F 3/065 slice to produce identified encoded data slices. The method
(2013.01); GO6F 3/067 (2013.01); GO6F 11/08 continues with the DS processing module prioritizing storage
(2013.’01); GO6F 11/1068 (20’13.01); GO6F error detection analysis of the identified encoded data slices
11/1076 (2013.01); GO6F 11/1092 (2013.01); over other encoded data slices stored in the DSN and when a
GOGF 11/008 (2013.01); GOGF 2211/109 storage error is detected for one of the identified encoded data
’ (2013.01) slices, identifying the one of the identified encoded data slices
(58) Field of Classification Search for rebuilding.

CPC

GOGF 11/1092; GOG6F 11/0727; GOGF
2211/1028

20 Claims, 61 Drawing Sheets

sets of slices for segment #1

[Dst_d182 [Ds1_d18&17] DS1_d31832 |

sets of slices for segment #2

[DS2_d3s4 [DS2_d16819 | DS2_d33834 |

sets of slices for segment #3 [0s3_d35836 |

ES3 | ES32 |

sets of slices for segment #8 [psears |

DSBd30 | ES82 |

sliced encoded
wE

encoded

data 156
de-slicing | / error
control 180 —» 200 decoding 206 [«— control 180
secured
segments 154
data segment 1 data segment 3 data segment § data segment 7
d d2 d3 d4 ds d6 d7 d8 d9 [d10 an | d12 413 | d14 d15
d16 | d17 d18 | d19 d20 | d21 d22 | dz3 d24 | d26 d26 | de7 d28 | d28 m
d31 [d32 | [d33 [o3¢ | [035 [ds6 | [[d37 [d38 | [[d30 | dd0 | [a4t [a42 | (43 | daa | [[oa5 |
data segment 2 data segment 4 data segment 6 data segment 8

US 9,292,212 B2
Page 2

(56)

5,802,364
5,809,285
5,890,156
5,987,622
5,991,414
6,012,159
6,058,454
6,128,277
6,175,571
6,192,472
6,256,688
6,272,658
6,301,604
6,356,949
6,366,995
6,374,336
6,415,373
6,418,539
6,449,688
6,567,948
6,571,282
6,606,718
6,609,223
6,718,361
6,760,808
6,785,768
6,785,783
6,826,711
6,879,596
7,003,688
7,024,451
7,024,609
7,080,101
7,103,824
7,103,915
7,111,115
7,140,044
7,146,644
7,171,493
7,222,133
7,240,236
7,272,613
7,636,724
8,386,841
2002/0062422
2002/0166079
2003/0018927
2003/0037261
2003/0065617
2003/0084020
2004/0024963
2004/0122917
2004/0215998
2004/0228493
2005/0100022
2005/0114594
2005/0125593
2005/0131993
2005/0132070
2005/0144382
2005/0226325
2005/0229069
2006/0047907
2006/0136448
2006/0156059
2006/0224603
2007/0079081
2007/0079082
2007/0079083

References Cited

U.S. PATENT DOCUMENTS

A
A
A
A
A
A
A

A

Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl

Bl
Bl
B2
Bl
Bl
Bl
Bl
B2
B2
B2
B2
Bl
Bl
B2
B2
Bl
B2
B2
B2
B2
B2
B2
Bl
B2
B2
B2
Bl
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

9/1998
9/1998
3/1999
11/1999
11/1999
1/2000
5/2000
10/2000
1/2001
2/2001
7/2001
8/2001
10/2001
3/2002
4/2002
4/2002
7/2002
7/2002
9/2002
5/2003
5/2003
8/2003
8/2003
4/2004
7/2004
8/2004
8/2004
11/2004
4/2005
2/2006
4/2006
4/2006
7/2006
9/2006
9/2006
9/2006
11/2006
12/2006
1/2007
5/2007
7/2007
9/2007
12/2009
2/2013
5/2002
11/2002
1/2003
2/2003
4/2003
5/2003
2/2004
6/2004
10/2004
11/2004
5/2005
5/2005
6/2005
6/2005
6/2005
6/2005
10/2005
10/2005
3/2006
6/2006
7/2006
10/2006
4/2007
4/2007
4/2007

Senator et al.
Hilland

Rekieta et al.
Lo Verso et al.
Garay et al.
Fischer et al.
Gerlach et al.
Bruck et al.
Haddock et al.
Garay et al.
Suetaka et al.
Steele et al.
Nojima
Katsandres et al.
Vilkov et al.
Peters et al.
Peters et al.
Walker

Peters et al.
Steele et al.
Bowman-Amuah
Bessios ..oooiviiiiiiniin, 714/701
Wolfgang
Basani et al.
Peters et al.
Peters et al.
Buckland
Moulton et al.
Dooply
Pittelkow et al.
Jorgenson
Wolfgang et al.
Watson et al.
Halford
Redlich et al.
Peters et al.
Redlich et al.
Redlich et al.
Shu et al.
Raipurkar et al.
Cutts et al.

Sim et al.

de la Torre et al.
Renadeccoovvviiennnns 714/6.22
Butterworth et al.
Ulrich et al.
Gadir et al.
Meffert et al.
Watkins et al.
Shu

Talagala et al.
Menon et al.
Buxton et al.
Ma
Ramprashad
Corbett et al.
Karpoff et al.
Fatula, Jr.
Redlich et al.
Schmisseur
Deietal.ccoene. 375/240.12
Hassner

Shiga et al.
Cialini et al.
Kitamura
Correll, Ir.
Gladwin et al.
Gladwin et al.
Gladwin et al.

2007/0088970 Al 4/2007 Buxton et al.
2007/0174192 Al 7/2007 Gladwin et al.
2007/0214285 Al 9/2007 Auetal.
2007/0234110 Al 10/2007 Soran et al.
2007/0283167 Al 12/2007 Venters, III et al.

2009/0094251 Al
2009/0094318 Al

4/2009
4/2009

Gladwin et al.
Gladwin et al.

2009/0132755 Al* 5/2009 Radke ..o 711/103
2010/0023524 Al 1/2010 Gladwin et al.

2011/0122523 Al* 52011 Gladwinetal. ... 360/49
2011/0209032 Al* 82011 Choietal. ... 714/773
2011/0307424 Al* 122011 Jinetal.ccceovvinnn. 706/12
2012/0179870 Al* 7/2012 Wang et al. .. 711114
2014/0247516 Al* 9/2014 Gladwinetal. 360/49
2015/0067245 Al* 3/2015 Krugercccoovviivinnn. 711/103

OTHER PUBLICATIONS

Rabin; Efficient Dispersal of Information for Security, Load Balanc-
ing, and Fault Tolerance; Journal of the Association for Computer
Machinery; vol. 36, No. 2; Apr. 1989; pp. 335-348.

Chung; An Automatic Data Segmentation Method for 3D Measured
Data Points; National Taiwan University; pp. 1-8; 1998.

Plank, T1: Erasure Codes for Storage Applications; FAST2005, 4th
Usenix Conference on File Storage Technologies; Dec. 13-16, 2005;
pp. 1-74.

Wildi; Java iSCSi Initiator; Master Thesis; Department of Computer
and Information Science, University of Konstanz; Feb. 2007; 60 pgs.
Legg; Lightweight Directory Access Protocol (LDAP): Syntaxes and
Matching Rules; IETF Network Working Group; RFC 4517, Jun.
2006, pp. 1-50.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Interna-
tionalized String Preparation; IETF Network Working Group; RFC
4518; Jun. 2006; pp. 1-14.

Smith; Lightweight Directory Access Protocol (LDAP): Uniform
Resource Locator; IETF Network Working Group; RFC 4516, Jun.
2006; pp. 1-15.

Smith; Lightweight Directory Access Protocol (LDAP): String Rep-
resentation of Search Filters; IETF Network Working Group; RFC
4515; Jun. 2006; pp. 1-12.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Directory
Information Models; IETF Network Working Group; RFC 4512; Jun.
2006; pp. 1-49.

Sciberras; Lightweight Directory Access Protocol (LDAP): Schema
for User Applications; IETF Network Working Group; RFC 4519,
Jun. 2006; pp. 1-33.

Harrison; Lightweight Directory Access Protocol (LDAP): Authen-
tication Methods and Security Mechanisms; IETF Network Working
Group; RFC 4513; Jun. 2006; pp. 1-32.

Zeilenga; Lightweight Directory Access Protocol (LDAP): Technical
Specification Road Map; IETF Network Working Group; RFC 4510,
Jun. 2006; pp. 1-8.

Zeilenga; Lightweight Directory Access Protocol (LDAP): String
Representation of Distinguished Names; IETF Network Working
Group; RFC 4514; Jun. 2006; pp. 1-15.

Sermersheim; Lightweight Directory Access Protocol (LDAP): The
Protocol; IETF Network Working Group; RFC 4511; Jun. 2006; pp.
1-68.

Satran, et al.; Internet Small Computer Systems Interface (iSCSI);
IETF Network Working Group; RFC 3720; Apr. 2004; pp. 1-257.
Xin, et al.; Evaluation of Distributed Recovery in Large-Scale Stor-
age Systems; 13th IEEE International Symposium on High Perfor-
mance Distributed Computing; Jun. 2004; pp. 172-181.
Kubiatowicz, et al.; OceanStore: An Architecture for Global-Scale
Persistent Storage; Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000); Nov. 2000; pp. 1-12.

* cited by examiner

US 9,292,212 B2

Sheet 1 of 61

Mar. 22, 2016

U.S. Patent

01 wayshs Bupndwos penguisip

Ol

gl yun

Buibeuew NLSQ

0g 2109
Bunndwos

grooeloUl |

| 90IASp Jasn

0F ooepo)ul |

0¢ @109
Bunndwos

gc188nbal
%SE) 1073 0F Ejep

__ IIIII NHN %Ecﬂ_ﬂ.wlovléoléwcﬁwm IIIII “ 0z nun Buissaooud
_ loyg obelojs paynguisip | Aubayr 180
| — — _ 97 0109
_ ¢ un oo 9¢ Jun _ Buinduwos
uonnIaxe |8q uopnIaxa 15@ I
| 7y /y _ {
- 1 ____ l £T aoeLolUI
A
> FZ YJomiau
Y Y
V_ 0F eoepsUl _ _ 7€ eoeLa)UI _ 78 S| _
9 # f
— \
€ o|npow —
Jualp 1Sq w%mﬂ:mm_
9z 2109 Bundwos
9¢ 8o bllndd 9¢ 8102 Bunndwos
g1 nun Buisssooud | SQ 2} 901ABp Jasn

US 9,292,212 B2

Sheet 2 of 61

Mar. 22, 2016

A

4

GG 1un Buisseoo.d
sojydesd ospia

U.S. Patent

97 2100 m:_SQES_

[AD]E]
_ I
g/ 9|npow ¥7 9|npow 2. 9npow adeLdul 07 @npow 80 a|npow 00 a|npow
S0EMRUINLSA S0euRUl H ysey S0epBUI oMU SOBURUI YgH S0ELRUI gSN
A A J] A A

_ I
| I
I YYVY VYVY _
_ _

_ 8G S9eldul [Dd #9 solg "
_ " WoY _
_ ‘ _

4

_ — — 75 9|npow _
_ gGJsjonuos [| QGeceusu | S0 |
I Ol Ol 891ASD O |
_ 3 _
_ v “
_ ¥ o] | 0Semnpow _
_ Aowsw urew [~ 7| J9)0au0d Alowsw [T T Buisseooud _
_ I
_ |
_ I
_ |
_ I
_ I
_ I
L

US 9,292,212 B2

Sheet 3 of 61

Mar. 22, 2016

U.S. Patent

U# JIun uoinoexe | Sq

1
i |
“ |
! 06 8jnpow € ainpow “ 94
“ uonnosxe | g 8P 1Sa “
_ “
! |
1 |
“ |
L | = — yg anpow | |
i gg Alowoaw 93 J9]|0.Ju09 Buissaooid m
B — R |
u# (shnsau erped _ T T T
Uff S90IS paral)al ¢0L _ “
synses jeued ! — >
Uz %sej [ered _ 78 buisseaoud !
1 ' |
1S@ punoqui !
u dnoub soiis _ |
. $801|S panalyal | 1>
° ! _
° _ “
36 “ I
L # (Shinsel e v 77 oMU Sise eped _ __
E3T 4 SOOIIS PaABLID) _ ~a _
uonnoexs |sa I 0g Buissasoud I
L# Yse) [ened A/.m./ 1S@ puncgino “
dnoib 2215 9 I a
W I sBuidnoib 9oijs | I
I
“ _
| _ I
I ¥E 8inpow jusid 1 Sa .“
L e e e e e

e
O

T)nsal

Z6 elep

76 Ysey

C6 efep

US 9,292,212 B2

Sheet 4 of 61

Mar. 22, 2016

U.S. Patent

0g Buissanoud | @ punogino

ug dnoub 2918
ugun [
UonNoaXa
1sd .
°
°
®
L#un . L#XsE)
uopnooxs |
18 [% zdnoBeors

1
|
1
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
L

g6 sysey |eiJed

811 o|npouw
[0JJUOD YSE)
panqguasip

¢

A
Y

09} |04Juod

711 10)08]08

91} enpow
[0J1U0D

091

_obcooh

097 |ou02

A

fuidno.b

96 sbuidno.b 8o1|s

211 Buipoous
Joue gQ

i
Buiuonned
ejep

—t—

) uoniped ejep

Jad 821 papooud

0

[4

b

suonijed ejep

76 Yse)

26 ejep

US 9,292,212 B2

Sheet 5 of 61

Mar. 22, 2016

U.S. Patent

sjun | S eAloadsal
0} syse) |eiJed Buipuodsaliod
pue sBuidnoub 891|s puss

|

[eo]

Syse)
lenJed sonpoud 0} Buluonied yse)
aU) Uo paseq (s)yse) ay) uopiped

|

[{e]

sbuidnoJb a91s 8onpoud
0} sJajpweled Buissaooid sy yim
8oueplodge Ul ejep ay) buisseoo.d

Vel A

siejoweled Buisseooid ejep

pue s)iun | S 8y} Uo paseq
Buiuoniyed yse} suiwlslep

4y

sjiun | S Jo Jaquinu 8y} uo
paseq ejep ayj Jo siajoweled
Buissaooid sulwisiep

o€}

(s)xsey sy} Joddns 0y sjun
150 J0 Jegquinu e sulwIs)ep

8¢k

(s)yse} buipuodsauiod
E pue Ejep aAI8d3l

4

US 9,292,212 B2

Sheet 6 of 61

Mar. 22, 2016

U.S. Patent

¢cl uolyed
ejep Jad s991s
EJEp Popooud

vl

Juswboes

ocl
uonied ejep

Ol
8G1 elep
papoous 0G| ejep ¥G] sluswbos
paol|s papoous paJInoas
051 wwl
Buissaoo.d a1 gy buipoous Buissaoo.d
Alunoss < Buiois N lous < Aunoss N buissaood
99|s Jad Juswbes
A
09} |o4ju0d
T — sh
09 [ouod | GTT s|npow 09l 104uod qluswboes ejep
|043U0D
091 |0u0d 097, [03U09

US 9,292,212 B2

Sheet 7 of 61

Mar. 22, 2016

U.S. Patent

g8 Juswbas e1ep g uawbas eep { Juswbas ejep Z uawbas ejep L7914
P || P [evp | [zop | wp | | owp | 6P || 9P | zep | | 9ep | sep || wep | eep || zep | Lep
osp | | 6zp [oep | [zep [9zp || sap | wap || czp | zzp || vep [oep | [e [s || 0 | oip
sip [[wp [e [[ap | Lp || o] 6p gp | up o | ¢p wp | ep e |
J Wawbas ejep G uawbas ejep ¢ Juswbhas ejep | JusLubas ejep
| svp | vwp | evp | 2o | vop [ovp [esp | sep | zep | 9ep | sep | wep | sep | zep | uep |
| ocp | 6zp | 8zp | zzp | 9ep | Gep [wep [ezp [zzp | Lzp [oz | ewp | ap | zip | 9P |
[sip[we e |ap | up{op[eo [oo | 2o ||| w]ep | ap | 1p]

SvPp | wvP | EVP | WP | PP
OvP | 6€P | 8EP | LEP | 9EP
GEP | ¥vEP | €EP | CEP | IEP
0Ep | 6P | 82P | 12P | 9P
Gep | veb | €CP | <P | 1P
0cP | 6P | 8P | ZLP | 9IP
GIP | vIP | €LP | CIP | LIP
0Lp | 6P 8P LP 9P
ap VP epP P \P

0CF uonied ejep

2G1 Siuswbhes ejep

vl
Buisseso.d
Juswbas

[—

i

uopped ejep

09}
|0JJU02

US 9,292,212 B2

Sheet 8 of 61

Mar. 22, 2016

U.S. Patent

DJE]
| Zes3 653 | swpesa | oepssa | gipesq | 8#3uewibes oy seols EJEP papoous Jojas
°
°
°
| Zes3 653 | 9¢%GEP €50 | 178029 £50 | 99Gp £5q | C#1USLIDAS 10 Sa0lS Ejep papoous jo 3o
| 283 253 | veveepzsa [6181 zsa | weepesa | c#Iuowbes oy sedys Ejep papoous jojes
_ AR L 1S3 _ 2e81EP 1Sa _ 21891P 180 _ Z®1p 18d _ L# usLWBas Jo} S82IS BJep Papoous |0 18S
0or gt | gy Buiposud Jor
[05u09 ’ Buos | Jolld ‘ [041U09
g Juswbas ejep g juswbas ejep ¥ Juswbas ejep Z luawbas ejep
414 Yo | EPP P | PP OvP | 6¢P 8ep | LEP 9ep | Sep ¥ep | €Ep cep | 1ep
0ep 6¢P | 8cP Lep | 9P Gep | peP ecp | ¢cp kcP | 0cp 6P | 8IP Lip | 9IP
SLp P | ELP clp | LIP Yy 6P 8p P ap Gp 144 £p cp P

/ Juswbas eep

G Juswbas eep ¢ Juswbas eep | Juswbas eep

US 9,292,212 B2

Sheet 9 of 61

Mar. 22, 2016

U.S. Patent

z8s3 | | 853 | spesa | [oepssa | | sipesa | 6 o
[J [J [] [] []
[[[] [] []
[] [[] [] []
7es3 | | 7€s3 [ocwsepesa | |[1zsozresa| | osspesa |
753 | RAE | vevecozsa | [eissipzsa| | veepzsa |
7183 | NEE [zemiepisa| [zmmopTisa| | zsipisa |
S#150 0} p# 150 0} £# 150 0} 2#150 0} 1#1S00)
g6 sbuidnolb aojs
F1T Joogjes —
Buidno.b R
I 853 | otpesa | ocpesa | sipesa |
[]
[]
[]
| 7es3 L es3 | 9ewsep €sa | 1z0zp esa | 9%9p €sa | el
uonued ejep Joy
R 17283 | veweeP zsa | 6198lpzsa | weepesq |0 SOOUSPOPOO®
| 7s3 17153 | zemiepisa | b isa | zmipTisa |

US 9,292,212 B2

Sheet 10 of 61

Mar. 22, 2016

U.S. Patent

GIUN X3 1SAd #IUN X3 1SA €IuNX3LSd ZHun X3 1Sd 13N X3 1Sd

(unyo eyep (uoned (uoned (Ofunyo eyep [(yunyo eyep
snonBiuod) | ol | elepH3) | Jorg elep D7) | snonbinuos) snonBiuod)

L X ¥ X G X X Z X
dnolb a21is dnosb 215 dnosb 215 dnolb a21is dnolb a21is
GIUN X3 LSA vIUNX31SA eWunX3d1sa ZiunxX3L1sd Lwunx31sa

(Ofunyo eyep [(unyoejep [(yunyd eyep (uoed (uoed
snonBjuod) | snonBpucd} | snonBnuod) | .ol g eiep 93} | 10l | EIEP DT)
€€ ¢¢ I € G ¢ b e
dnoJb a21is dnoJb a21is dnoJb a21is dnoib 2215 dnoib 2215
GIUN X3 LSA vIUNX31SA €N X3 1sa ciun X3 L1sd 1wunx31sa
(uoned (Ofunyo ejep [(yunyoejep [(yunyd eyep (uoed
Joj | elepn3) | snonbBpuod) | snonBnuecd) | snonbiuod) | o)z elep 03)
12K4 €¢ ¢ I ¢ §¢
dnosb 215 dnoJb a21is dnoJb a21is dnoJb a21is dnoib 2215
GIUN X3 LSA vIUNX31SA €N X3 1sa ciun X3 L1sd 1wunx31sa

(uoned (uoned (Ofunyo eyep [(qunyoejep [(yunyd eyep
Jojzeepn3)|Jo | elepn3) | snonBpuod) | snonbiuod) | snhonbBiuod)
Sl vl €l Z Ll
dnosb 215 dnosb 215 dnoJb a21is dnoJb a21is dnoJb a21is
GIUN X3 LSA vIUNX31SA €N X3 1sa ciun X3 L1sd 1wunx31sa

RO S |

uonauny buidnoih
pue Buipoous

86 syse) [eled

Xt
uoniped ejep

e
uoniped ejep

4
uoniped ejep

(1os yunyo)

V#
uoniped ejep

16 Yse)

vl
Buiuonied

26 eep

US 9,292,212 B2

Sheet 11 of 61

Mar. 22, 2016

U.S. Patent

86 (s)se)

|enJed

<l

-

96 S82IIS

-

—
¥0L s)insal

L# JIUN UONN99Xd | S(Q
9§ J9]|0J1U0D
81 ozl
104199 |0Ju0d ¥Z1 |04uco
1sd SE) Alowaw
« y v
€ ainpow 06 2|npow _
Wa1P 1Sa vognoaxe |q [€*| 88 ~owsw
A A A

10/9Q
00} s=0lIs

=T synsel jened |

>

ZIT sysey |enJed-gns pue (/] sbuidnolb a91s-gns

891 ®oeqpes; 1Sd

interface 169

L4 1un 41q Jo}
(spyse) [eued

Z X
elep w:o:m_u—coo

| € ejep 03

¢ ¢eep o3

11 (Glunyo)
elep snonbnuod

L#3un X3
1SQ Joj sdno.b 801|s

X# uoned

¢4 uoniued

z# uonied

L# uoliJed

US 9,292,212 B2

Sheet 12 of 61

Mar. 22, 2016

U.S. Patent

L#Jiun uolnasxe]S g

0/ |0Ju09 YsE)

| uoniped
1o} yse) |ened

9g J3]|0JIu0d

-8J UO (s)uonouny
¥se) [erJed wiopsd

GIP [v | €P | 2P | WP
o | 6P | 8P | P | 9P
| v | ep | o | P Y
| uoiiped jo 300(q ejep
snonbijuod ps|quiasse-ai —
06 9|npow
uonndaxXa
SY30(q ejep psjqwosse 1d

¥71 |04u0d
Aowauw

| uoniJed jo | dnoub
Jo} (s)jnsau |erJed

83 Alowaw

GLp 830

v18ELP €SA

¢LBLLP €Sa

0L'86P €S0

88.p €80

98P €£8a

¥8€P ¢Sa

Z8lp 1sa

| Buidnoub sa1is ul
| uoniJed Jo $991|s
EJEp Popooud

US 9,292,212 B2

Sheet 13 of 61

Mar. 22, 2016

U.S. Patent

Ugt Jlun
uonnoaxXe

1Sd

1514

Z8 8uissaooud | 5@ punoqui

U# (S)ynsai |elued

U# S80I|S panalijol

L#un
uoNNd8Xa

1Sd

——»
L# (ShinsaJ [eued

L# S89I|S pandli)al

S99I|S paAsIIlel
$99I|S papooUs

_ I
_ _
_ I
_ I
| 587 elnpouw e
+ —| |0JJUOD YSE) Ly
I 201 (shnseu
! 207 s)nsa. |ened paNqLSIP “
I
i “
_ I
_ I
I —_
! 387 einpow “
“ 061 |04u00 040D 061 |o4u09 “
_ |
“ 061 1043U00 !
_ I
I TaT I

T T v8l
! 08t ¢81 Buipooep L
I Buidnoib-op Joue g Buuoned i —+—- 7 ejep
I . -9p Ejep “
| I
_ 55T 0zl I

o ZCl uonped Ocl

“ 00} ejep Jad suoniued ejep |
I
i “
_ I
_ |

US 9,292,212 B2

Sheet 14 of 61

Mar. 22, 2016

U.S. Patent

v1 "Sld

(shinsal
ay) sanpo.d 0y Buisssooud
SYNS8J B YIM 85UBPIOIJ. Ul
synsal |ented ay Buisssooud

[

=

¥S€) 8Y) UO paseq
Buissaooud) nsal Buluiw.sep

51
synsal |ented ay 0
Buipuodsa.i09 yse) BuirsLlel
7
s)nsal [eued aAIgd8)
61

US 9,292,212 B2

Sheet 15 of 61

Mar. 22, 2016

U.S. Patent

| cesa | 1es3a | swpesa | oepesa | sipssa |
. 51
®
| zes3 | 17esa | oewsepesa | 1esozpesa | gsspesa | =T
$89I|S JO SJ8S Oju| uoied
| 7753 | 1zsa | vesecpesa | e1vsipzsa | vsepzsa | € 10} SI0IS parael
| 2s3 [1isa |eemerisa | aveptisa | zsipisa |
087 J0108|9s —
BuidnouB-ap <« 06l 104U
001
$901|S pPoABIIIB)
| cesa | | vesa | | swesa | | oepesa | | sipesa |
® [J [J ® [J
[J L J [J [J []
® ® [] ® []
| 2ess | | 1esa | [oewsepesa| |[iesoepesa| | owspesa |
| uonnJed Joy
| zessa | | vzsa | |weseepzsa| [ewselpzsa| | weepzsa |
| zis3 | | vsa | [zewmerusa| [uzsapisa| | zswpisa |
G#N3ILSAWOL PENILSAWOY €#NILSAWOL Z#NILSAWOH L#N3I 1SQ WOy

US 9,292,212 B2

Sheet 16 of 61

Mar. 22, 2016

U.S. Patent

74}
uonied e Joj
$8I|S pansLal

| RDIE
aG| elep 0G| eep ¥Gl Suawbas
popodUD PaolIS popodUo painoes
281, Buipoosp Jous pesiedsip |
I
— 80z “
5 ¢0¢] Buissasoud oz !
uIssa00. 70z | | 90¢ Buipoosp Alunoss !
fynoes solis [~ Buioys-ep [T Jows " juowbes > mc_ww%ooa T
Jad asianul 8SIoU| Juswbas-ap !
H 061 |04u0o “
II |
2} 0zt
067 104u0d | ggTemnpow | 0BT 104U0D guowbes ejep uoniped ejep
|0JjU02
061 |0u00 061 |0u00

US 9,292,212 B2

Sheet 17 of 61

Mar. 22, 2016

U.S. Patent

FARDIE]
9 uswbes elep 9 uswbes elep ¥ awbes elep Z uswbes eep
Gyp Yo | €vP cyb | P ovP | 6¢p 8ep | Zep P | G¢ep vep | eep cep | Lep
oep 6ZP | 82P LZp | 92pP GZP | ¥2P gcP | <ap lek | OcP 6LP | 8LP LIP | 9IP
GLp VP [€LP P | LIP OLp gpP 8P pAY 9P Gp P ep P P

/ 1uswbas ejep G juswbas elep ¢ juswbes eep | JuswbBes ejep

$G1 suswbas

paindes
— 90¢ Buipooap | ¥0¢ __
0Bl [0Jjuod — 1005 - Bupys-op | € 061 104u00
9g1 eep
papoous wml_‘ ejep
PapoIUe Palls
| zs8s3a | opesa | sipssa | 4 1uawwBos 10} Sa0)s Jo sjos
[
[J
[}
[zesa | 1es3 [oewseresal 4 uaLIDaS 0} 39S JO sjos
| veseepzsa | 61881p 2sa | y9epzSa | C#uowDes 10} $80|s JO $jos
_ Ze8LEP 1SA _ L1891P 1SQ _ A AN _ L# JUoWBas Jo} S80IS JO S}eS

US 9,292,212 B2

Sheet 18 of 61

Mar. 22, 2016

U.S. Patent

Juolped ejep
GhP | WP | €WP | 2vP | P
obP | 6€P | 8€p | Zep | 9ep
GeP | ¥eP | €ep | zep | lep
0P | 62p | 82p | 2P | 9P
Gep | ¥ep | €2p | 2P | lep
OcP | 6P | 8P | ZLP | 9iP
GIP | PP | €W | TP | LIP
o | 6P | 8P | P | 9P
p | ¥ | P | 2P | P

0ch
uoniped ejep

01¢ —
Buisseood [e— 06}
JuswBas-ap |04u02

sk
sjuswbes eyep

| svp | vop [evp | zop | 1op | ovp [6P | sep | zep | oep [sep |

pep | eep | zep | 1ep |

| ocp | 6ep [9zp | zzp | 920 | sep | wep | sop | @ep | wep | oop |

6ip | aip | zip | 9ip |

[[wwp e [ap | up o[60 [8P | 2p | oo [op |

NN

g Juswbas ejep 9 Juswbas ejep ¥ Wuawbas ejep Z Wuawbas ejep
Gyp e | EVP P | LPP ovP | 6ep gep | Zep 9ep | gep vep | €ep ¢ep | Lep
oep 6ZP | 8¢P LZp | 9ep gep | veP gep | <P LeP | 0cP 6LP | 8LP LLP | 9IP
GLp vLP | EIP P | LP OLP 6P 8p Y 9p gp 144 £p P LP

J Wswbas eep

G Juswbas ejep

¢ Juswbhas ejep

| Juswbhas ejep

US 9,292,212 B2

Sheet 19 of 61

Mar. 22, 2016

U.S. Patent

(qunys elep
snonBpuoo)
17X
dnoib 8o)|s

(uoppJed
1o} | BYEp O3)
_wlx
dnoib sol|s

(uopned
1o} g ejep 03)
G X
dnoib so)|s

(unys eep
snonBpuco)
Y
dnosb 8ol|s

(qunyo eyep
snonbiuoa)
7 X
dnoub aoyIs

GIUN X3 1SAd yIuNX3.LSAd €N X3 1SA ¢yuN X4 LSd Liun X3 1Sd

(qunyo eyep
snonBnuoo)
¢e
dnoub soiis

(qunyo eyep
snonBuoa)
Z¢
dnouB so1is

(unyo ejep
snonfpuos)
| €
dnoub a01is

(uonped
10} Z elep 93)
S¢
dno.b 805

(uonnued
jo} | ejep 3)
v e
dnoJb s01is

gINX31sd yiunx3 L1SA €IUNX31SA ¢Wun X3 LSA L Hun X3 1Ssd

(uoyiped
io} | €ep O3)
124
dnoJf aol|s

(unyo ejep
snonBuoa)
£¢
dnouB a0lis

(qunys ejep
snonfpuos)
Ak
dnouf a9)|s

(qunyo eyep
snonBnuco)
I ¢
dnoub a9ljs

(uoyiped
lo} Z €jep O3)
¢ ¢
dnoJb a01|s

GIUNX31Sd yiun X3 L1SA €IUNX31SA cHun X3 LSA LHun X3 1sd

(uonnsed
lo} g ejep 03)
Gl
dnoub 891Is

(uoiiped
i} | ejep 53)
vl
dnoib aol|s

(unyo eyep
snonBiuos)
€l
dnoub a01is

(unyo ejep
snonbiuoa)
A
dnoub aoljs

(unyo exep
snonBiuoo)
Ll
dnolb aois

GIuN X3 1sa yunX3LSA €N X3 1Sa cyun X4 LSd Liun X3 1sa

AV VA VR,

¢le
Buipoosp
pue
fuidnoib-ep

Xt
uoiiped ejep

c#
uopiped ejep

4
uoniued ejep

(19s yunyo)
L
uoniued ejep

61 Ol
17%4
Bujuoniyed
|®U
6 Blep

US 9,292,212 B2

Sheet 20 of 61

Mar. 22, 2016

U.S. Patent

U# Jlun uonnoaxa | Sq

)

}

1

ne —_— }
uonnasxs | | u31P 18q “
“

}

}

1

1

88 flowsw 98 Jo[|0U0D !
}

}

U# SOOI|S PaAaLIa)

I
I
I
I
I
vE 8npowjuap 1sq !

]
I
I
e 001 s9ol|s ponaups !
® ! 78 Buisseooud _
* S > Lsapunoqu | CoEEp
U# $9901IS " |
_ “
! |
o ¥z yompu “ “
[# sools panaLiel
JUN UoNNoeX9 | 8Q Vi SSOS POASH “ “
I I
_ A ! 0g Buisseooud T
b L# S80S gz seols | 1S@ punogino <6 &P
I
I
I
I
I
I

US 9,292,212 B2

Sheet 21 of 61

Mar. 22, 2016

U.S. Patent

Ug J1un
X3 150

S90I[S

jo ug Jeyid

L#3un
X3 1sd

$80I[S

10 |# Jey|id

e e |

08 Suissasoud | 5Q punogino

a1 8|npow
|04jU00 YSE}
pengLisip

!

09}

TPIBORETES
Buidnoib

9IT
$991IS Jo sJe||d

|0.JU02

0

91| e|npow
|013u00

0ze ssedAg

9l

|0U0O
y

21} Buipoous
Jols 8Q

0l
Buiuoiyed
Ejep

8lc
$901|S pepooud

¢6 exep

US 9,292,212 B2

Sheet 22 of 61

Mar. 22, 2016

U.S. Patent

¢ 'Ol

21} Buipooua Joise pasiadsip |

-«

vl
Buissaooud
Juswbas

sjuswbss ejep

G X p X £7X X 17X AH_ x# Juswbas ejep
°
°
°
¢¢ 14 €¢ ¢¢ I ¢ AH_ Z# Juawbas ejep
Gl vl €l A L1 AH_ | # Juawbos ejep
e
Buml|s 9
Buipoous
Rt e et
I
[
— —
— ! 051 vh
5 81C] “ Buisseo.d 5T ovl Buisse00.d
Juowbos ejep Jod «—— pings [buiogs [Bupoous 1« fyunoss
$901|S popooud ! 5015 Jad Jos JUaWBos
i A 09T [0Auco A
097 |04u0d gl7 e|npow |97 |0u00
|0u0o
097 |0Jju0d

097} [csu02

26 eep

US 9,292,212 B2

Sheet 23 of 61

Mar. 22, 2016

U.S. Patent

x Bas Jo x bas Jo x Bas Jo x Bas Jo x bas Jo
sosGUe|d | edysyued [edysgued [soyszuejd [8ys | Jejd
°
°
°
¢ Bas Jo ¢ bas Jo ¢ bas Jo ¢ bas Jo ¢ bas Jo
aolsgJejid | eosyueyd [eoysgeyd [eoyszend [eoys | Jejd
Z bes jo Z Bes Jo Z Bes Jo Z Bes jo Z Bes Jo
aolsgJejid | eosyueyd [eoysgeyd [eoyszend [eoys | Jejd
| Bas jo | Bas Jo | Bas Jo | Bas jo | Bas Jo
dolsGue|d | sonspued | soysgued | soysgJepd | saus | Jeyd
glunx3 1sd viunx3 Lsd €iunx3Lsd ciunx3 Lsa Liunx3.Lsd

744
Buidnoub Jejid g
Buiol|s ‘Buipooud

¢6 elep

US 9,292,212 B2

Sheet 24 of 61

Mar. 22, 2016

U.S. Patent

L # JUn uonnasxs] Sg

x Bas Jo

gg J9]|0J1u0D
98 4sllon s0ls | Je|d

¥Z1 |04u00
............................. , Kowsw

_ 91
| $90I|S
| D

97 2400 8unndwod

¢ bos Jo
7€ s|npow 06 3|npow 25 Aowaw a|s | Jeyiid

W32 15a uouNIaXa 1@ I

|
| 00t

S » | 4 se0lls

interface 169

gz bas o
39ys | Jey|id

| Bos Jo
a9ls | Jejd

soolls |4 Jelid

—— o —— e e e = = = e = e = = o]

US 9,292,212 B2

Sheet 25 of 61

Mar. 22, 2016

U.S. Patent

Ug Jlun
UoNNoaXa

18d

U# S90I|S paAslijal

L#un
UoNNoaXe

1sd L# S99I|S pansie.l

Z8 8uissaocoud 1 5@ punoqui

837 8|npow
|0J4ju02 Yse)
pangLisip

A
Y

061 |osu00

08l

O

0g] 9|npow
|0Jju02

6l

_QESF

Buidnosb-ap

00}
$90I|S poAslyal

297 Puipoosp
1019 8Q

0z¢ ssedAq

8l
Buiuoned

Juswbes ejep Jad
$99I|S POPOoUD

8le

-op BJEp

26 Blep

US 9,292,212 B2

Sheet 26 of 61

Mar. 22, 2016

U.S. Patent

9¢ 'Old
g X ¥ X £7X 7 X 17X X# Juswbos ejep
°
°
°
_ _ _ _ _ 26 elep
G ¢ 12K4 € ¢ ¢ ¢ L ¢ Z# Juowbas ejep
[74
gl vl €l 4 Ll |4 uowBas eep | Juewbes-ap
44
Buipoosp
pue 99IS-op
T T T T T T T T T T T T T T T T ST ST T T T TS T ST TS ey "
! Z81 Buipodep Joue pasiadsip |
| — 1
! — 80¢
— | — Buissaoo.d J—
8lc ! Buissaooud 707 90¢ fyunoes 0be
juswbes elepied ——w > »| Buipoosp > . »| bBuissaooud
S90I|S PapoouD “ Hnoos bupoyis-op Jola Juawbas Juswbas-op
! i 901|S 9SJBAUI 9SJOAUI
! ﬂ 061 _eEoo:
_L — Z5T 6 ejep
061 |6Qu0d 087 9|npow 061 [o4uod wEOEmww ejep
|0JU0D
061 10u0d 061, [04U0D

US 9,292,212 B2

Sheet 27 of 61

Mar. 22, 2016

U.S. Patent

£ "9l ¢¢eNpoW NLSQ
||||||||||| 1 | | | e | | I=== === ====7
Ug Jlun I ! Wi Jun [! B un I ! Of Jlun [_ L#UN
uonnasxe 1sq | | uonnoexe |Sq | 1 uonnosxe 18 | | uojnoexs |80 | 1 Uopnasxs | Sq
1 ! | ! 1 ! | !
1 ! 1 ! 1] | |
pEonpow | ! eee || Frompow |! eee || fFonpow |! eee | [FEonpow |! eee || Franpow
el 1sq | ! | wepLsa | ! | wewoLsa | ! | e Lsa | ! || welp L1sa
1 ! 1 | 1 | 1 |
98 Jojjoquod | | I | 38Jei04u00 ! || 98 Jel00u00 ! I | 98 Jel/04u00 ! || 98 Jeli0nuoo
1 ! 1 | 1 | 1 |
06 enpow | ! i | 06 emnpow | ! i | 0Bemnpow | ! i | 08empow | ! | 06 einpow
uonndaxe | “ “ uonnoaxe | q “ “ uonnaaxa | “ “ uonnasxe | “ _ uonnaaxe |
! T —1 1 | “ o
! ! ¥ 8p00 ¥SB) papoaus g _ ! !
! “ ! “ T e ! _
“ | “ 1 “ ¢ | “ 1
1 ! | “ 1 ® “] !
! ! ! ! ! | _ ¢ 9p09 SE) PAPOIUD S _
“ i | _ “ | ["
“ | | | “ _ ¢ P00 Yse) pspoous SQ _ |
1 | | _ 1 ! | 1 !
U eJep papodus §q _ m _ | BPO3 ¥SE) coc.Sco sd _
" i “ o | " _ “ |
1 | 1 e | 1 | | 1
1 !] o ! 1 “ “ _
“ ¢ BJEp PapOUB S(_ _ i _
“ i _ “ [_ Z Elep popoous §(_
| | 1 u T T I T I
! “ ! “ _ | Elep papoous S _
® | | o® | Ll om [T ® | | ®
fiowsuw | 1| Aowew \ 1| Aowsw | | Aowsw \ ! fiowew
1 ! | ! 1 ! |
1 1 1 1

US 9,292,212 B2

Sheet 28 of 61

Mar. 22, 2016

e e e o . . o o e —— —— —— = . = — —— — —— — — — — —————}

ZZ @Inpowl (N1SQ) Homiau yse} g ebeso)s painguisip

_ U BJEp Papodus JOLd §Q

|
|
| |
" s _) 3p09 YSB) PSpPOOUS J04I3 SQ _ "
| o “ |
| | ceeppepoousionesay | - |
I
“ _ Z BIBp POPOOUR JOMS S _ _ Z 9p00 YSB) POpooUS o3 §(_ _
I I
_ _ | BIEp PEPOdUS JOLD §Q _ _ | 9P09 YSE) PEpOIUS J0Ld §(_ _
e e e e e e —I
meméou&_ gy UoneuLiop C uoneuLou memEBE_
nsos uoedolje 1Sa uoneaol|e 1Sa nso)
Z2€¢ 8|npow 2%z 8|npow
uogNGLISIP XSE) LONNGLISIP XSE)
A A
€2 i[z4 8€C iz _
707 sinsal aleep | qlvsel dleep [qiyser | ¥Ol synsal
v popajes | pejos|es popojes |pajsjes
Z& o|npow T#9npow
Jusld 1sd U110 180

al X xsey - di uejep - ql 9 %se) - dl 6 €jep -

al y¥se) - ai L eep -

Qlg e - aizeep- al L yse) - Qlzeep-

al | ¥se} - ai | exep - 95 ZSOP0o XSE] JO 18| al | ejep -

9ECS3P0I XHSE) JO IS|| YECEIEp JO 18| : PECEIED JOIS]|

U.S. Patent

US 9,292,212 B2

Sheet 29 of 61

Mar. 22, 2016

U.S. Patent

79z Uoneuwloju
uonesojie 1Sa

X v
X 2
Z z¢
A ¢ ¢
X 4 4
X €l
A A
'O T S
_ 8¢ | 9L
082 pow | jiun
senceded | X3 | X3
X3 1d 10 | 1sd

0Fc alsel §E¢ I ejep ——————
6¢ Old

pojosles pajos|es Yy yseL

gaseL
Ldser | seL

¢ £seL
752 onpow ﬂ L £Ysel | gxseL
uoiNQLISIP YSe) ¢YselL | ¢isel

L | seL

Z | seL
LHseL | Lase
85¢ 95¢
> ¥Seqns | HiSej

9y CE

yse|-gng < yse|
U01S U D3S L0l | ZX UIpPY | ZX u UD1S:U93S 95 | o9 uJppy | 04 u
€ 01S°€ 9IS 'G/E | AA €IPPY | AA € € 0715 93S9L/0L | 99 ¢Ippy | 99 €
Nwo._mwmwom_m G/E >XHN_%< AX 4 Nwo._m ”Nwom_m 8/G m<wm%c< av 4
1018193868 | XXLepY | XX [L0181 938G/ | WLIPPY | W [|
0z | 8% 2% | 0%
v.¢ sivjaweled ¢le o 8z | d 99¢ Sivjoweled #9¢ ol 9z [di
Sa Ippy usel | Xse Sa Ippy Eleq | eleqd

25 S9|npow uonnoaaxa | g

0GZ uonewloul a6e.0)s ySE)

3be uonew.ou abe.oss ejep

US 9,292,212 B2

Sheet 30 of 61

Mar. 22, 2016

U.S. Patent

0t o g6z spom | <
anbiun o 18| 915 spJom anbiun
96¢ 81EMO|] 1SE)
poje|suel)
Apoalios —
PI< suonejsuen
SPIOM J 381 1081102
76¢ OTE sioue Q] 0} eJedwod
paje|suel) A
Aposuiooul
SPIOM JO 18|
ZrEsioud || T 4 TAZES —
uone|sue.) pajejsue.)-al M“H_ paje|suen % ¢6 EjEp
76¢ spiom pJom-uou 80€ >9Eq 90¢ —
-uou 0} anp A__H 897 (seseiyd) aje|suel) aje|suel)
sJoLB J0 8| spiom pajejsues) | <
|| 91J108ds S]] $0E saselyd Jo/g spiom paje|sue) ol1oads
DB Spiom A
-uou JO Js]] —
20¢% (Aeuonoip e uijou “6'a) spiom-uou
099z (seselyd) A
SpJom O1108ds Js|| —
00E soselyd Jopg spiom d1yoeds
(2| puB ¢~ | Joye paloplo) SUCHE|SUE.] 108.I00 BUIWLIB)OpP - /| YSe]
soselyd Joy9 spom oyoads pull - Z ¢ ysel (L1 pue ¢~} yse} Jajje polap.o) SI0LS UOIJeSUBI) PIOM-UOU SUILISISP - G | %SE)
s)eISUBl) - | € YSE) (-1 YSe) Jeye palapio) sloss (| 0) 21edwod - G| ¥4SE)
SOSEId 10/Q SPIOM PajB|SUE]] OI1090S pull - ¢ YSB| (€71 vse) Joye pasoplo) Yoeq aje|suel) - | %se)

(paJsplo-uou) sjejsuel] - £ | ysey
(paiaplo-uou} spiom anbiun Ajuspl - - | %sel
(palopic-uou) spiom-uou Ajuspl - || ysel[&] SISAJEUE UOTE[SUET} - | SEL

S3SEIYJ 1075 SPJOM J1[030S Ul - ¢ YSeL

US 9,292,212 B2

Sheet 31 of 61

Mar. 22, 2016

U.S. Patent

1€ Ol
o I A T Lyt A T Lyt A T
. I T S I TS N T S A BT < N
| Jlun uopnoaxe ! | JIUN UOIINOSXS 1 | JIUN UORNIBXD 1 | JUN UOKNODXS 1 | JIUN UO[NISXS 1 | JiuN UORNISXS 1 | }UN UOPNIBXS
| 1sa il sd m o 1sa@ ! 1s@ ! 1sa 4! 1sd 1! 1s@
— — — 1 — 1 — 1 — 1 —
| 7Eainpow |1 | Fgempow |1 1| FEempow |1 | FEeinpow |1 if FEemnpow || FEeinpow 1| §E s;npow
|| WO 1SA |1 [WelP 1S |1 | WP 1SA 1| WS IS |1 ;| Ueld 1A (1| W0 1Sa 1| Welo 1Sa
1 1 1 1 1 1 1
I I I I I I I I I I
1 | Jojj05u0d m 1 | J40jj04u0d m ! g Jojjou0d m ! J40]j04u00 m m ¢ 19]|0:Ju0d | m Z J9jj0u0o |, m | 18]|01)U0D
I I I I I b Ly
'l 17} sinpow m“ 1~ 8|npow m“ |G 9|npow : | 9|npow : L€ 9|npow : |~ Z 8|npow : 1"} 8|npow
| uognoexe |y If uognosxe |; I uognoexe “ 1| uognoexe “ 1| uonnoexe “ 1| uognoexe “ 1| uonnoexe
! 1a || 1d || 1a || 1d || 1a || 1d || 1a
I Ly Iy Ly Iy Ly Iy
i ¥ ¥ 1] L] 1] L]
! “ ! “ ! ¢ 9p02 %SE) cmcoo:mﬂ 3q
1 1 L1 1 L1 1 1
“ ¢ 9p02 ¥{se) papooua g Hy b
I . . ' . Ly Iy
_ B “_ M I 1, 1
! || ! | 800 ¥%Sk) Papoous S
! : : [T [T [T [T
! N N ¢ BJEp Papoous S(
| | | | | | 1 | 1 | 1 | 1
m gg Alowsw |} m gg Alowsw |} m gg Alowsw |} m gg Alowsw |} m gg Alowsw |} “ gg Alowsw |} “ ag Alowaw
| Ly Ly Ly Ly L L

US 9,292,212 B2

Sheet 32 of 61

Mar. 22, 2016

U.S. Patent

4>

I €

L

91

61

vl

€l

1l

bl

3
%sE)

e M.
€-L‘9'gspun 1sa | Guun 1S Gunlsq | Ced | TS%CcrYCceET Tl Z¢ly-L ¢l | €Jaye
(€ 1se
L1y €1y esn 8lWeS) suou
=) "2 sun 18@ Lun18Q Zjun1sq ¢d 2R 9 G v € zg-l¢ auou
ZGlY-1 Gy Sl
L€ spun 18Q gnun 18q ENNISA | LM | TS8TYTETCTL | 711 g ld | 8T L Jeye
ZG61Y-1 6y Sl
9-¢ siiun 18d gjun 18Q Zwnisa |9l | LS e L | 9711 -ld | 8L L Jele
R et .
G- spun 18@ L jun 1SQ bwunisa | Sd | LS L EeL e L | 82 vd-)L vrlY v | Joye
B NHN K ;HN .Wm »NHN .NU Nwm-rm_ - mHm-E B
2-€ spun 18Q gnun 1sa gunisa | v id| LS rLeL el v eld-1 €1 € | Joye
zeyTvrcece zg7-6¢
9-¢spun18@ ¢iun1s@ Zwnisa |eld | LS rhe el ve-Le suou
G-l spun 18@ Ljun 18@ bwnisa | zd | LS e el ve-1¢ duou
G- spun 18Q L3un 18Q Laun 1sa [I B A T A 2 A A A Z¢-1¢ auou
9€e
0FE ebelo)s g¢¢ abelo)s buissadoud yee 828
JinsaJ sjeipaweil] | ped ydjesos | jnsel wusjul | sweN ZE¢ spow X3 1 g Jo1es 0¢¢ uopiped elep | Bupspio yse)
$Z€ ojul J|nsaJ aje|paLulaul ZZ¢ OJUl Uondaxs yse)

UONEJIPUI LIDISIBAUOD JRULIO]

‘uoned yore Jol ojul “Ippy

‘suonnted Jo 'oN ‘Q| e1ep[A} :0Z¢ ol uonied ejep

CvT ojul uonedoje 1S

._
|
|
1
I
|
1
|
1
1
I
|
1
|
|
1
|
|
1
I
|
1
|
I
1
1
|
1
I
1
1
I
|
1
I
|
1
1
I
1
1
|
I
1
I
I
1
|
1
1
|
I
1
|
1
1

J

US 9,292,212 B2

Sheet 33 of 61

data 92

Mar. 22, 2016

U.S. Patent

| result 1_2 (list of unique words |

.................... . RG] e,
_ 701 SAT 1
[201 06 \ | 70T 06 \
| synsal AH_ spow X3 | ! — s)insa) AH_ spow x3g | |
_ Rw |enued 1aJoies a A uoned _,|\.W eiyed 1010198 ﬂ@ Z uoned
| ® ° .| € Lnsal ! ® e | ejep
! ® ® ®
| ° o m (X X © | [) [} m (XY
= | 201 06 —| 20l 06 q
2| | anm |l wous | SRRSOl | e |l o [P | <3
o | lened 1dJo1es | 1 €V S leiyed 10J0Jes | |
m | | | uoniped m ') uopned
201 06 ¢ 1 ynsal 701 06 ejep
|| ﬂw sinses [spow x3 “% — ﬂv, sinsas | (| spow x3 “Q
! |efed 1d403es | ! lelued 1aowes |
| DpEqoEisuen)y Lysel ! (OPRISUEL) € | ¥5€) “
||||||||||||||||||||] i —— |
T T =T] e Ol fomoooo—s--mooo oo . o1
[¢ 06 ! [- 06 _
sjnsai spowxg | ! — | s)|nsaJ spow x3 |
Rw lened 1ajoes ﬂv Z vojipied) _Mw ened 10098 ﬂv z cm_wwg
eje
- s R :
| e 3 ! (X X | S \ o omm. ! (X X
_ a0l 06 & = 701
| s |caf sois | Sf@omR|CIE) (3|h | e |(o s | S
| feged 10/0Ws | | 1P © Z|)| rewed 104038 |
|
m 1| | uoniped = m | | uonned
ok 06 Ejep 3 20F 06 ejep
@ sjnsau AH_ Spow X3 WW — | ﬂ/.,v s)nsel AH_ spow X3 fw
! lenJed lajoles | ! lened 1gopes |
| (Spiomenoun Az L¥se) | | (SpIOMUOUQl) L LSE)

i
data 92

US 9,292,212 B2

result 1_7 (list of correctly translated
words)

Sheet 34 of 61

Mar. 22, 2016

result 1_6 (list of errors due to non-
words)

U.S. Patent

result 1_4 (retranslated data)

data 92

m-==--------------oe | 7yoped)P
c0} 06 L[271 nse .
s || |5
1| lened 1gjoges | y |Zuonned =
! ° * L |G Lansal ~ 3
¢ Pl |z
T s g5
! ! > “.IIIII|I IIIIIIIIIIIIII ! Z yoniued
| || v uonped _ 20} 06 |1 |Zvomw
201 06 L | 771 nsa 9 Au sinses | 77| spow X3 y71 Jinsel
AH_ synsas | (| spow x3 AH_)= leted 1010198 AH_
_ |enJed 1dowes | 1 || uopyed S ! ! z CM_thQ
| (suonejsuenjosuoo) y 7y ysey | § L Insal > “ ! ep
L = 3 \ * e ! o
E & |
S3| | ° ° ! e
E o |
\oTTTTTTemr ! | zuoped el “
! 200 06 |G| ynsal 2 ! __ b [y vonned
06 I -
synsa. spow X3 w0, A ¥ |)nsal
Au_ eied < 1 jo1es A.“u_ zuoppied | (| = Au_ synses 7| spow x3 Au_
| .o ® I [L1 nse m ! lered 1does [1|} vopped
! s c ! . - ! (a1edwoo) G|, yse) | ejep
|] ® @ 3/ —mmmm—m—————————————— J
i o c
“ I |} uonnsed 2
| 20l 06 | G| ynsal ~ o
AH_ s)nsal AH_ Spou X3 A_H_ AH_ M_ =
_ leiped 1djoes |1 || uopyed 3 2
| (spiom-uou o) enp s1o8) g | ysey | b L HNs -

US 9,292,212 B2

Sheet 35 of 61

Mar. 22, 2016

data 92

| result 3 (specific translated words/phrases) |

U.S. Patent

2 8 - 8 2
— > - = 0 S @
6¢ OId 5 E m m m W
8% ° 5 g S S _ g
T I 2% 2 5 o 2
s 3 |35 |db |38 [dn | 2 |db| T |dm |2E|dn]
M_ m N N - & W
e o = @ 8
cru =
Y72 uoiewiojul jnsal
8¢ oI L€ Ol
IIIIIIIIIIIIIIIIIIII | _IIIII|IIIIIIIIIIIIIII
o 6 | — [@ %6 | !
sjnsal Spow X3 | N —_ ! s)nsal spow X3 1
lened AH_ 1qJoes @ Z uopped m _MW enJed AH_ 1qJoes @ z uojyped
[® | € Linsed £ ! ® ° _ BlEp
° S ° 4
. o | eee = B ! ° ° m Y
20l 06 ! — g I 201 06
synsa AH_ spow X3 AH_ ¢! o_ﬁw% AH_ E .m AH_ synsau AH_ Spowl X3 AH_ 4 cM_M_th
eiped tgops | v B 2118l | ewed 1aj0%s | 1 ep
|
|| | uoped z m ! |} uopped
201 06 ¢ 1 nsal = 701 06 ejep
s)nsa. AH_ spow X3 ﬁ_w — m @ sjnsau AH_ Spow X3 ﬂw
[efped 1asoes | L1t] jeped Laoes |
(seseiyd “ | (SSSEIG/SPIOM 0Y10ads) 2 sel m
/spiomoyioads pejejsues) eysey ¢ 0 TTTTTTTTToTToooomoos
b o e o e e - L

US 9,292,212 B2

Sheet 36 of 61

Mar. 22, 2016

U.S. Patent

Vov "Old

L e howew

Aiowsw sjeuls)e

0G¢ 90l1A8p
Aowaw

_

_ —

_ 85 oo1Aap
_

_

S ——_1

79
$00I[S

79
$00I[S

ZG¢ J49||0u02

29¢ sasuodsal $$899€ 89||S e » 09¢ sjsenbal ss899€ 89||S

US 9,292,212 B2

Sheet 37 of 61

Mar. 22, 2016

U.S. Patent

g0y Ol

991Aap Alowaw ajeuls)e
B} YIM $991|S pajelbiw au) 9)BI100SSESIP
0] puE 201ABpP AJOWSLU BY) UIm $891|s pajelbiw
ojel|lyje 0} 8|qe) Uoleoo| B0I|s Bl ajepdn

§I¢ A

30IABp Alowsw
3y} 0} 99IASP AIOWBW B)BUISYE AU} WO S82I|S
gjelBil ‘a|gejieAe S| adIASp AJoWwaw By} usym

o A

20IABP
Aiowalu 8)euIs)E 8Y) YIM 321[S B} JO alleu
201|S € Jel|ILe O} D|qE) UONEI0| 80I|S B ajepdn

203 A

80IABP AIOLISLU S)eUIB)[E BY) Ul 89I|S BY) 8I0)S

0 A

80IASp AloWaW S)euss)fe Ue 109(es

0/€

8oInep Aowsw
Buipuodsau0o sy ul 8dls B BI0IS | T &

o|ce|lene

80€

a|qe|iene si 991Aap Aiowaw Bujpuodsaliod
E Joyloym sujwlslep 1sanbal 891is S)lm B 0}

& A

US 9,292,212 B2

Sheet 38 of 61

Mar. 22, 2016

U.S. Patent

2 8Inpow N1SQ

7a¢ 1sonbai sse00e

991|s Buip|ingau

!

9¢ o¢ o¢ 9¢
Jlun uolNJeX | g @@ | NUN UOINOBXS Jlun uolNoaXe Jlun uonN9aXe
1sd 1sd 1sd 1sd
A
A
08¢ Jojealpul
uopoLsel Z3¢ sasuodsal $$a00. 99I|S e »
$$9008 99I|S
Y
g} Jun

Buibeuew NJSq

08¢ sjsenbau ssao0e 82IIS

7€ anpow jusip 1S3

US 9,292,212 B2

Sheet 39 of 61

Mar. 22, 2016

U.S. Patent

1s8nbaJ ssaooe Bulp|ingas ay) s)noexs

86¢

obessalw Jois ue puss Buipinga.

96¢

BuipiingaJ ym pajeivosse
S11sanbal $$8208 89I|S BUj) JOYIBUM BuILLIB)OP

6% A

1senbaJ $s8008 81} 8)N08Xd

6t

LONOLISB) SSB00. UB U)IM Po)jeInosse
s11senbaJ $S8008 89I|S BY) JOYIBYM BUILIB)EP

[

06 A

159nbaJ SSB00R 89I|S B BAI808)

[e.0/
[ap’

B A

US 9,292,212 B2

Sheet 40 of 61

Mar. 22, 2016

U.S. Patent

4A0]E]

|aAg| Buidud Jasn-uou
ay) pue [aAs| Buiold Jasn au) 1o U0 UC paseq
Buip|ingas ayy Joy uoiyewdoyul Bujjig sieseush

42 A

J0.I9 901|S BY) JO 82I|s ke Bulp|inga. B)el|ioe)

oA A

[oAs| Bupud [oAs| Bupud
Jasn-uou e ysigeise Jasn B ys||ge)se

80% 90%

LU0
-Josn

LB
-13SN SI 9SNES 004) JOUBUM BUILLISISP
voy 9
10118 8018
U] L)IM PSJRIDOSSE BSNED 1004 2JN|IE) B Aljuspl

207 A
1049 921|S € 0] Buipuodsa.iod aWweu 991|S
B S9pNjou| 1By} Jsenbal 891 plingal e sais08)

o A

US 9,292,212 B2

Sheet 41 of 61

Mar. 22, 2016

U.S. Patent

Buiddew ay) yiim aouepioase
ul suoneao| abelals Jo 1as ay) Je $adl|s
Bep paposua Jo 189S ay) jo abelo)s a1eyl|ioe)

93] A

fuiddew e sanpoud 0 siajeweled Buipoaus
aU) Y)Im BIUBPIOIIE Ul SA3IASP AloWSLu
[eaisAyd a10W JO BUO PaIIUBPI BY) UIL)IM

suonedo| ebelo)s 10)9s B 0) 19s)ic ay) dew

3 A

s80Inap Alowaw [ealsAyd alow Jo auo Apuspl

247 A

S92I[S BIBP PapOoU3 |0
1as e 8onpoud o) siajeweled Buipoous ay) yim
85UepJ0dde Ul uonaun) Buiped Jows abelo)s
pas.iadsip e Buizijiin ¥20(q ejep ay) apodud

4 A

yaeoidde Aiowsiu [enpiA e
)M 85UBPIOIJE LI Sisjalleled Bulpodsus uleqo

24] A

¥00|q BJep & 2I0]S 0] 1s8Nbal S)LIM B SAI903)

2 A

N
¥20|q AJowaw

¢
¥90|q Aowaw

L
¥20|q Alowaw

917 Aowsw

7T¥ 49]|04u00

S PR

US 9,292,212 B2

Sheet 42 of 61

Mar. 22, 2016

U.S. Patent

Vv Old

r— 1 —_—_———_——_——_——_————_—————— = =
_ _ _
< 9% $991|S J|iNga. ! _ _
| = S0l _ >{ 0S¥ sinpow Buipiinga. _
oppopou | | | | |
abeioys | _ 09% bBuipjinga. A _
_ _ 10} S30I|S B)ep Papoouad _
. _ | payjuap! au Jo oo BY} JO (] _
° _ _ _ _
™ — i > 8¥ ainpouw _
"A mwmw:oawe it “ uoia)ep Jous fuoud _

— 751 1senbail yoeqpaes)
orpopou | | _ _
obelojs _ | 3CF $90||s elep |
_ _ papeoua paljiuapl _
_ _ _
ﬁ%mwc " _ 9%F snpow syes; [€ “

€
_ _ _
_ _ _
oppepou | | | !
abei01s _ _ |
I 3Gy osuodsal ¥oeqpas, “ > vrv _
_A mmh > HOEqPSS)] 8|npow uopdsiep Jous | 7oy Bulp|inga. |
| 75T 1senbal yoeqpaa) _ lojeoSERp |
B | _ —— pepoousjo Q|
FINST | L crremeosise _
|||||| yEp s01nep Bunnduioo

US 9,292,212 B2

Sheet 43 of 61

Mar. 22, 2016

U.S. Patent

S80I[S B)ep pepoous
paliuapl pejepdn sy pue Seol|s Blep pspoous
paljuap! 8} JO 3UO 8y} Jo BuIpiingal SjeN|Ie)

¥ A

90I[S B1Bp PEpPOoUS 8y Jo Buip|ingal ajey|ioe;

06 A

$32I|S Blep paposus paluapl pajepdn
U} JO SISA|BUB LOND8J8p Jouls abelols azoud

58 A

syeJ) abeuois pajepdn ayj uo paseq
S82||S Blep papoaus ay) Buikiuapl sy jsnipe

%v A

$80I|S B)ep Pepoaud
palluspl B} 4O dUC Y Jo} S)iel) obeI0)s
ay) uo paseq syles) abeioys pajepdn djesush

ey A

$0I|S BJep PapooUS PaLIUSP!
3y} JO BUO By} Jo} s)ies) abeI0js aulw.lep

4] A

Buip|ingai
10} $89I|S BJRp PapOIUS paluSpl 8y} Jo
8UO 8y} Aljusp! ‘sJI|S BJep PapoIUa paLnuspl
B} JO BLO IO} Paj0a)ep s! Jouio 8bei0)s B usym

087 A

$89I|S BIEP PapooUs paliuapl
U] J0 SIsA|BLE UOND8)8p Jolla abelais azioud

81y A

90I|S EJEp Papoousd ay} Jo s}iel) abe.o)s
2I0W IO SUD 8Y) YIIM uowLwod ul jiel) abelio)s
8UO Jses| Je BuiAey $801|S BIEP pPapodUs Ajjuspl

5Ly A

20I[S BIBP PSPOOUS BY) YIM
paleIoosse syiel} 96.I0)s dJ0W JO BUO Ajuspl

21 A

Buip|ingal Jo) 821jS B1RP PBEPOIUB BY] AlUSP!

2] A

20I|S Blep PEPOaUS Ue JO Joue abeio)s e jos)ep

oy A

US 9,292,212 B2

Sheet 44 of 61

Mar. 22, 2016

U.S. Patent

Op¥ epou
abelo)s

0F¥ epou
obelojs

0v¥ epou
abelojs

Oy epou
abelo)s

9¢¥ NSC

015 Jodio 901|s

9G asuodsal yoeqpas)

> 906 a|npow

_
_
_
_
|
_
_
“A #G¥ 1senbai yoeqpas)
_
_
_
_
|
_
_
_
_
_

uoijo8)ep Jolls abelojs

808
$99I|S BJep papoous Jiel)
abelos uowwos Jo sdnosb

70G
3|NPOLU S)1BJ} UOWILOD

205 8lnpow sQ

00G ©91A8p Bunindwod

US 9,292,212 B2

Sheet 45 of 61

Mar. 22, 2016

U.S. Patent

$90I|S EJEp popoous
JeJy abelojs uowwod Jo sdno.b sy Jo suo Jo
$89||S BJEP PAPOIUS BY) JO JBguInU [BIUBISANS
E UO sisAjeue uonos)ap Jois abelo)s ainoaxs

4% A

Jolis sbelojs pajosiep
e Buiney 821|S BlEP Papoaud Ue Ajjuapl

0€S A

anss

sosuodsal
Yoeqpaa) buip|ingal sy uo paseq se9l|s
e1ep papoous Jo Buidwes ay} Jo Alpien 1s9)

%5 A

sopou abe.0)s oW JO dUO
aY) WoJ) sasuodsed yoeqpas) buip|ingas aA1809.)

Vs A

$82||S Bjep papoous ay} Jo Buidwes
e Buuoys NSQ ayj Jo sepou abeloys alow
Jo suo 0] 1s8nbai yoeqpss) Buip|iNgas e puas

e

anssl
AIpileA e sajeaipul Bunsa) Jeyjaym sulwle)ep

825 A

S©01|S EJep popoous Jies) abelo)s uowwod Jo
sdnoib aonpoud 0} NS € Ul paio)s Sal|s ejep
papooUus JO s}iel} 8b.J0)S UOW WD BulW.Is}ep

= A

US 9,292,212 B2

Sheet 46 of 61

Mar. 22, 2016

U.S. Patent

papelfdn usaq ||le arey
SHuUN X3 150 40135 o) Jayiaym sulwlRep

s A

1sanbal apeifidn sy
UJIM 90UBPIOITE Ul SIUN X3 | S 2Jow Jo auo
pa}a2jas ay) Jo alemyos Buipesbdn ayeyjioe;

as A

aouanbas
apesBdn ue Bulnp aAioe ulewal sjiun X3 18Q
10198 8Y) JO sjiun X3 | S 10 Jaquinu aAijoe
Ue Jses| Je Jey) yans sjiun X3 1 Sq 3|qe|leA. ay)
uo paseq Buipesbidn aiemyos Joj syun X3 184
10188 8Y] Jo S)IUNn X3 | S 940 IO BUO 199]85

078 A

Sjiun X3 L SQ Jo1es ay)
10 SJUN Y3 1S SAIOE JO Jaquinu B sulLIs)ep

85 A

sjun X3 15d
Jo 188 81} JO SjuNn X3 | S 9|qe|lene Ajjusp!

%S A<

S}IUN UoNNJ8Xa | S 10198
B J0 alemyjos Jo} jsenbal speiBdn ue aA1a0al

= r

US 9,292,212 B2

Sheet 47 of 61

Mar. 22, 2016

U.S. Patent

1sonbai sse20e
8l ‘JaAas ay) A ‘ssaoold ‘paliian uaym

995 A

Japeay uonesnuayine ay) ‘1anias sy Aq ‘Aluaa

7% A

Loy
g1eAld Janses e Buizin Jepeay uoljeonpusyne
pajdAioua ay) ‘Janias ay) Aq ydiiosp

0% A

1sanbal $S830€ Ue pue Japeay uojjednuayine
paidAisus ay) quald ay) Aq ‘indino

0% A

Aoy 211gnd Jaades ay) Buiziyn
Japeay uonesnusyine ay) quslo sy Aq ‘1dAious

8% A

S|enuapala Juald sapnoul Jey) Jopeay
uoneanuaLne ue ‘qusld sy Aq ‘alessuah

%5 A

Aoy 21ignd Janias
pue uleys sleslipad sy Juslo eyl Ag ‘Ao

&0 A

Aoy 211gnd
19AIas € pue uleyd 81ed1iIaD B Sapnjaul jey)
8suodsaJ 8)eolad e Janss sy Ag ‘sjeseush

&5 A

Jonos
e 0] 1sanba.J 8]ed11ILad By} qualjo ay) Aq ‘puss

(o]

058 A

1sanbau 8182111180 B ‘Ul € Aq ‘ajeisuab

Q)

i A

US 9,292,212 B2

Sheet 48 of 61

Mar. 22, 2016

U.S. Patent

JIUN UONNJSX®
1S@

JIUN UONNJSX®
1S@

JIUN UONNJSX®
1S@

JIUN UONNJSX®
1S@

\ /A ADE]

_
— — _
9¢ 9¢ _
JIUN UONNJSX® Jun uognoexe | |
1S@ 1S@ _
Z nea _

o€

JIUN UONNJSX®

1S@
IIIIIIIIIIIIIIIIIIIIIIII _
— — _
9¢ 9¢ _
JIUN UONNJSX® Jun uognoexe | |
1S@ 1S@ _
_

US 9,292,212 B2

Sheet 49 of 61

Mar. 22, 2016

U.S. Patent

yun X3 15Q buiey sy yim
pajejoosse ejep Bulojs apnjoul 0} Jun X3 1S
JuBLWaoR|da) 8UO 1SES) Je JO UOIBAIJR SJB)[o.)

085 N

un’x3

15q Buirey auy ajeoipur [~ 4 9|qeloAe]

8IS

ploysaiyl mo| e yiim Ajgeloaejun sesedwod
SHUN UoRNoBXe | S L0 JBquinu B Jayiaym
DUILLIBIOP ‘S)NeA DJOL JO BUO BY) JO UdeD Io}

L A

s)un X3 1.8 J2Y)o 8y} Jo sniels sulwisiep

2k A

sjun X4 1S3 4oyjo
Ayuspl ‘s)neA Jow Jo U0 8Y) JO YIes Jo}

s A

nun X3 1Sq Buijie}
BU) Y)IM PBJBIDOSSE S)NeA 210U IO 80 Auapl

0 A

Jun X3 1Sq Buiie) e 10839p

= A

US 9,292,212 B2

Sheet 50 of 61

Mar. 22, 2016

U.S. Patent

V8y "Old

98¢ Aowaw

065
Aowsw 89118
Aejodws)

88¢
Aowsw 89118

_
_
_
_
_
R —

096G 096G
$00I[S $00I[S

78G J9]|0U00

PBG sesuodsal ssa00. 8IS e » Z6G sisenbal sseooe 80l

US 9,292,212 B2

Sheet 51 of 61

Mar. 22, 2016

U.S. Patent

Aowsw 991|s Aesodws) e 0) Aowsw
99I|S 8y} Wodj 891|s 8y} Buirow ajeyljioe;

909 A

uoljesado 1sanbal ss829€ 891|S
Buipuodsa.i09 B JO LUoINIaXs djeyl|ioe} N

09

1sanbaJ $s8298 991 8y} Jo A)l|IqiSIanal s)el|ioe}
0} Jay1aym aulwisiep ‘Aowsw 891|s 8y}
Ul PaJ0)s 891|S 8y} JO UOIIBDLIPOW BAIONASSP
urJinsal ||im 3senbal $$809€ 89||S 8Y) Usym

<09 A

Alowaw 991|S 8Y) Ul paIoIs
90I1|S B JO UONEeDIIPOW SAIdNIISAP Ul Jnsa) Aew
1s8nbaJ $S8298 99I|S BY) JAYJBUM suILIBIBp

[
({=]

0

A

159nbaJ SSB00R 89I|S B BAI808)

[ee/
o

965 A

US 9,292,212 B2

Sheet 52 of 61

Mar. 22, 2016

U.S. Patent

6% "Old

AlowaLu 801js 8Y) Ul 801|S J|INGa) 8Y) 810)S

09 A

Aowsw 891 Aelodwa) B Ul 821IS 8Y] 8101S

379 A
901IS JjIngal
e adnpeud 0 891|s By Jo Buip|inga ajey|ioe}
919 N
9|qelone]
A
anjea fjuBajul

901|S paAslial ay) 0) Ajgeloe) saledwod anjea
AuBa)ul 91| puU0ISS BY} JaYIBYM BUILISIBP

<
-
(e

A

891|$ paAslijal ay) uo
paseq anjea AlLBsjul 201js pucoss e sjessusb

a9 A

anjea
Aubajul 891Is paasiial B sonpoid o) Alowsw
80I|S B} WoJ) anjea Aubajul 821 e arslal

[
-—
(=]

A

Aiowau 291[S B WOJ} 29IS & 9ABL)a.

9

Q)

US 9,292,212 B2

Sheet 53 of 61

Mar. 22, 2016

U.S. Patent

[———

929 18! Ayubayul

929 15!l AyaBajul

829 891|s JIngel

jiun uoljndexa

1sd

Y Y
9 9¢ 9 9¢
Jun uonnoaxa Jun uonnoaxa Jlun UoRNJAXd Jun uoinoaxa

1sa 1sa 180 1sa

A A A A

929
81| Aubajul
g 90IIS

9¢9 18!l Ayabayul ‘y 90l

929 181l Aybeur ‘g 8oy

A 729 1IneA

929 318! Aybayur ‘g aaljs

7€ aInpow Jusip 18q

9 Emn%

929 ys!| AyaBayul ‘|, ool

US 9,292,212 B2

Sheet 54 of 61

Mar. 22, 2016

U.S. Patent

g0s oI

r—————— 1
_ |
[e — |
| _— [%9 Alowaw
| _ gegoomap | ||
| ebR)GIS (I) | e
| | | —
Ll L | gvg s0lls
oyl _
_ _) _ _ <«——— 33 enpow sbeios
[_ [| ggg ebessow Jous
HERRIIN | 7y
| _ abelo)s I | 759 anjea Ayibajul
_ | | anjesedwod

_
_ || o
_ “ gegeomep | || 7Gg uoneuuojul Aubajul - P9 sinpow 755 enjeA
_ | obelo)s _ _ | Aubaui sanesedwos fyibaiul
¥ _ _ _
| _ 8p9 80l|s
et _
_ obeigys | || _

_ L 1
| | o 879 eolls _ > 759 o|npoLu 2oljs
|, wges | _
_ 1 coinep sbeis || |
| "~ "7 | _ 369 o|npow
| T@Nsa L seodposd _ _ _ _ _ |
|||||| 029 so1Aep Bunndwod

US 9,292,212 B2

Sheet 55 of 61

Mar. 22, 2016

U.S. Patent

anjen Aubajul
aAleledWwod auy) 0) AlgeioAe) Saiedwod anjea
Aibajul ayy usym aoiaep abelols e jo Aowsw
Ul 891|S elep papoaus ay) Jo abelo)s ajey|Ioe)

anjea Ajubajul
aAljesedwiod ayj 0 A|geloAelUNn saiedliod anjea
An1BsUI By uBym sbessol JoLS Ue s)elousb

779 A

029

AlgeJione}

anjea Ajubajul anijeiedwod ayj o) A|qBIOAE]
saledwod anjeA ABajul 8y} JayIdyYM auILLIS)BP

599 A

uoneuuoul Ayubsiul ayy Jo uorlod
B]SED)| B BU] UO Paseq 99| EJEP PaPOOUD
oy} 4o} enjeA Ajbajul sanesedwos e sjelsush

999 A

90IAap abeJo)s Jayjoue Wodl
uonewoul fubajul Jo uoilod e 1sea) Je ulego

799 A

89I|S EIEP
papooua 8y} 1o} anjea Aubajul ue sjelsush

2% A

80IIS
EJep papoous Ue ‘aolasp abelols e Ag ‘aaigal

o i

US 9,292,212 B2

Sheet 56 of 61

Mar. 22, 2016

U.S. Patent

aos old

r———-—-—-= A
_ _
I - _
| “ I 789 Alowow
I | gegoomep | ||
| ebRUIQRIIS (1 | e
| _ _ L
_ _ _ “ _ % mo__w _

_ [] _ _ _
I ° I _
I | i [_ —
_ | || _ 069 8npaLu sjepi|ea |
I obeicys | || _ 769 fdoo 055 anfen _
“ | “ | “ uonewJoyu AyiBejul Ayubayul _

_ — gl |
[" gegeamap | 1| 269 Adoo uonewuoul AjuBaul _ > \mm@ (b co_ummwou_c_ _
_ | aBeio)s “ _ " a|npow Ados Aubagu fubo _
_ | _
_ _ I _ g9 0911 _
[gegoeamep | |} _
_ _ abeioys _ _ _ _
" | e _ _ 759 uoneuvoy! Albaju _ > 555 olnpow one0a) _
| _. 8_>wm%mgmsew | _ 8¥9 elis | _
_ T =g | 286 einpow s@ |
|||||| _ === ===
089 s91nep Bunndwod

US 9,292,212 B2

Sheet 57 of 61

Mar. 22, 2016

U.S. Patent

9|qeJoAe] S| UoSLedwod
ay) uaym aoinsp abelos sy} Jo Aowsw
Ul 891|S Bjep papoous sy} Jo abelo)s sjey|ioe;

%01 A

uonewJoyul
KiBajul paniadal sy} Jo uolod e jses)
Je Buipuodsauiod e yum uonew.oul Ajubajul ay)
10 Adoo ayj Jo uonlod e Jses) e sy ssedwiod

v0L A

90IAOP
abeuos Jayjoue woJy uonewloyul Abajul
8y Jo Adoo e Jo uonod e ises| je uleyqo

0L A

99I|S BJEP POPOOUS UE pUB uoljew.ou!
Abajur ‘eoi1nap abeloss e Aq ‘enlsdal

o A

US 9,292,212 B2

Sheet 58 of 61

Mar. 22, 2016

U.S. Patent

16 'Ol
selAq 009 selAq 005 ¢z ybua) ejo)
salAq 00| salAg 001 $2/ 9z1s uswbas
Z¢. dwel 82inos
50ad LOvY JINeA Juswbhas uejs
Vv Je 1vS
$8)Aq 009 ¢ wbus| [ejo) sa)Aq 005 9cZ ybus) [ejo)
SalAq 001 yZZ 921s uswbhas sa)Aq 001 ¥21 92is Juswhas
¢/ SWeu 82Inos Z¢/ dweu 8ainos
5094 JIneaA juswbas pers LOVY 1INeA Juswbes 1ers
¢asyie IyS q9vi Je 1vS
g1s 'Ol
V4vE Elep
¢asy g uoniped eyep
a9v | uoJed ejep
0¢/ sweu —
99IN0S JNeA 1S 812 108lq0
917 Aojosiip

¢Z @Inpow N1Sa

A
1A%
S90I|S BIEp 493
papooLd o
$80l[S eJep papoous
10 S}8s 0 8108 JO Ajjein|d Jsu
10 Ajjeanid ' . |
puOdeS

€ enpol jualo 18q

017 elep

US 9,292,212 B2

Sheet 59 of 61

Mar. 22, 2016

U.S. Patent

EJep 8} JO SWeu 82nos
JINeA 1S ay) apnjoul 03 Alojoaulp ay) ajepdn

ol A

alueu a2Inos
Jjnea | S Buipucdsallos e Je suolied aiow Jo
OM] 8} JO} UONBLUIOUI | S Sapn|oul Jey) ejep

ay) Jo} |yS ue Buuos pue Bunelsush ajeyoey

07 A

alWeu
92/n0s JneA | S Bulpuodsauiod e apnjoul 0
Aojoalip e Buijepdn sjey|ioe) ‘uchiyed yoes Joy

%l A

1vS Buipuodsauios
E LJIM 8OUBPJOOOE Ul 9jnpol N1 S e ul
$921|S BJep papoaus Jo Ajjjeln|d BuipuodsaLiod
Bulols ajeyioe; ‘uonued yoes Joj

el A

aleu 82Inos
Jnea |yS Buipuodsallod e e | S ue Buuols
pue BuneJssuab ajey|oe] ‘uolped Yses Joy

&l A

$821IS BJEP Papeaus Jo Aljeln|d e sanpe.d
0) ucnied ay) spodus ‘uciiled yses o}

0eL A

suoniued
alow Jo om) ojul sbela)s Joj ejep uonied

@ 1

US 9,292,212 B2

Sheet 60 of 61

Mar. 22, 2016

U.S. Patent

324 9I4
®
™
°
06eY 000V 6aes
gdco 00001 gdcy
557 797 | 257 sweu
99/ jesjjo 8218 00I[S S0
297 Mojosuip Jauigjuoo

g¢s Old
097 3] — —
Jsquinu Jaquinu 961 vael dl
Juswphes 100(qo dlynea | Jsulejuod

ZGZ aWeu 99)Is

a¢ Jun uonoaxa 1Sq

N Jaulejuoo

Z Jaurejuod

| JouiBjuod

op/ Aowaw

H

¥y J19||04U09

0GZ dWeu 89l

S

- - - ___

US 9,292,212 B2

Sheet 61 of 61

Mar. 22, 2016

U.S. Patent

1980
pajoriXa ay) Buizinn Joulejuoo ay) ssaooe

oL A

xapul ay) Buizijiin 9|ge) Jauieucd sy)
10 Aljud ue 0} Bulpuodsauioo 19S10 U JoB)XS

22 A

9|GE) JOUIBJUOD B OJUI Xapul Ue 8onpoid 0} dlieu
0I|S 8} L0 UOIouN] 9NsIUILLIBISP B Wwioped

al A

allieu 201 8y} UO paseq Jaulejuog e Ayjuspl

0L A

BlWEU 80I|S
B SpNjoul Jey) 1sanbal $s800. 80I|S B SAI808)

g0 A

US 9,292,212 B2

1
DETECTING STORAGE ERRORS IN A
DISPERSED STORAGE NETWORK

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility Patent Application claims priority
under 35 U.S.C. §119(e) to a provisionally filed patent appli-
cation entitled ACCESSING A DISTRIBUTED STORAGE
AND TASK NETWORK having a provisional filing date of
Jun. 25,2012, and a provisional Ser. No. 61/663,796, which is
incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

NOT APPLICABLE

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

NOT APPLICABLE

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computer networks and
more particularly to dispersed storage of data and distributed
task processing of data.

2. Description of Related Art

Computing devices are known to communicate data, pro-
cess data, and/or store data. Such computing devices range
from wireless smart phones, laptops, tablets, personal com-
puters (PC), work station, and video game devices, to data
centers that support millions of web searches, stock trades, or
on-line purchases every day. In general, a computing device
includes a central processing unit (CPU), a memory system,
user input/output interfaces, peripheral device interfaces, and
an interconnecting bus structure.

As is further known, a computer may effectively extend its
CPU by using “cloud computing” to perform one or more
computing functions (e.g., a service, an application, an algo-
rithm, an arithmetic logic function, etc.) on behalf of the
computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop is an open
source software framework that supports distributed applica-
tions enabling application execution by thousands of comput-
ers.

In addition to cloud computing, a computer may use “cloud
storage” as part of its memory system. As is known, cloud
storage enables a user, via its computer, to store files, appli-
cations, etc. on an Internet storage system. The Internet stor-
age system may include a RAID (redundant array of indepen-
dent disks) system and/or a dispersed storage system that uses
an error correction scheme to encode data for storage.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a distributed computing system in accordance with the
present invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present invention;

15

20

25

30

40

45

60

65

2

FIG. 3 is a diagram of an example of a distributed storage
and task processing in accordance with the present invention;

FIG. 4 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) processing
in accordance with the present invention;

FIG. 5 is a logic diagram of an example of a method for
outbound DST processing in accordance with the present
invention;

FIG. 6 is a schematic block diagram of an embodiment of
a dispersed error encoding in accordance with the present
invention;

FIG. 7 is a diagram of an example of a segment processing
of'the dispersed error encoding in accordance with the present
invention;

FIG. 8 is a diagram of an example of error encoding and
slicing processing of the dispersed error encoding in accor-
dance with the present invention;

FIG. 9 is a diagram of an example of grouping selection
processing of the outbound DST processing in accordance
with the present invention;

FIG. 10 is a diagram of an example of converting data into
slice groups in accordance with the present invention;

FIG. 11 is a schematic block diagram of an embodiment of
a DST execution unit in accordance with the present inven-
tion;

FIG. 12 is a schematic block diagram of an example of
operation of a DST execution unit in accordance with the
present invention;

FIG. 13 is a schematic block diagram of an embodiment of
an inbound distributed storage and/or task (DST) processing
in accordance with the present invention;

FIG. 14 is a logic diagram of an example of a method for
inbound DST processing in accordance with the present
invention;

FIG. 15 is a diagram of an example of de-grouping selec-
tion processing of the inbound DST processing in accordance
with the present invention;

FIG. 16 is a schematic block diagram of an embodiment of
a dispersed error decoding in accordance with the present
invention;

FIG. 17 is a diagram of an example of de-slicing and error
decoding processing of the dispersed error decoding in accor-
dance with the present invention;

FIG. 18 is a diagram of an example of a de-segment pro-
cessing of the dispersed error decoding in accordance with
the present invention;

FIG. 19 is a diagram of an example of converting slice
groups into data in accordance with the present invention;

FIG. 20 is a diagram of an example of a distributed storage
within the distributed computing system in accordance with
the present invention;

FIG. 21 is a schematic block diagram of an example of
operation of outbound distributed storage and/or task (DST)
processing for storing data in accordance with the present
invention;

FIG. 22 is a schematic block diagram of an example of a
dispersed error encoding for the example of FIG. 21 in accor-
dance with the present invention;

FIG. 23 is a diagram of an example of converting data into
pillar slice groups for storage in accordance with the present
invention;

FIG. 24 is a schematic block diagram of an example of a
storage operation of a DST execution unit in accordance with
the present invention;

FIG. 25 is a schematic block diagram of an example of
operation of inbound distributed storage and/or task (DST)

US 9,292,212 B2

3

processing for retrieving dispersed error encoded data in
accordance with the present invention;

FIG. 26 is a schematic block diagram of an example of a
dispersed error decoding for the example of FIG. 25 in accor-
dance with the present invention;

FIG. 27 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing a plurality of data and a plurality of task codes
in accordance with the present invention;

FIG. 28 is a schematic block diagram of an example of the
distributed computing system performing tasks on stored data
in accordance with the present invention;

FIG. 29 is a schematic block diagram of an embodiment of
atask distribution module facilitating the example of FIG. 28
in accordance with the present invention;

FIG. 30is a diagram of a specific example of the distributed
computing system performing tasks on stored data in accor-
dance with the present invention;

FIG. 31 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FI1G. 30
in accordance with the present invention;

FIG. 32 is a diagram of an example of DST allocation
information for the example of FIG. 30 in accordance with the
present invention;

FIGS. 33-38 are schematic block diagrams of the DSTN
module performing the example of FIG. 30 in accordance
with the present invention;

FIG. 39 is a diagram of an example of combining result
information into final results for the example of FIG. 30 in
accordance with the present invention;

FIG. 40A is a schematic block diagram of another embodi-
ment of a distributed storage and task execution unit in accor-
dance with the present invention;

FIG. 40B is a flowchart illustrating an example of storing
slices in accordance with the present invention;

FIG. 41A is a schematic block diagram of another embodi-
ment of a distributed computing system in accordance with
the present invention;

FIG. 41B is a flowchart illustrating an example of access-
ing a stored slice in accordance with the present invention;

FIG. 42 is a flowchart illustrating an example of establish-
ing a billing rate in accordance with the present invention;

FIG. 43A is a schematic block diagram of another embodi-
ment of a distributed storage and task execution unit in accor-
dance with the present invention;

FIG. 43B is a flowchart illustrating an example of storing
data in accordance with the present invention;

FIG. 44 A is a schematic block diagram of an embodiment
of a dispersed storage network (DSN) system in accordance
with the present invention;

FIG. 44B is aflowchart illustrating an example of detecting
storage errors in accordance with the present invention;

FIG. 44C is a schematic block diagram of another embodi-
ment of a dispersed storage network (DSN) system in accor-
dance with the present invention;

FIG. 44D is a flowchart illustrating another example of
detecting storage errors in accordance with the present inven-
tion;

FIG. 45 is a flowchart illustrating an example of upgrading
software in accordance with the present invention;

FIG. 46 is a flowchart illustrating an example of authenti-
cating a client in accordance with the present invention;

FIG. 47A is a schematic block diagram of another embodi-
ment of a distributed storage and task network module in
accordance with the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 47B is a flowchart illustrating an example of protect-
ing data in accordance with the present invention;

FIG. 48A is a schematic block diagram illustrating another
embodiment of a distributed storage and task execution unit
in accordance with the present invention;

FIG. 48B is a flowchart illustrating an example of process-
ing a slice access request in accordance with the present
invention;

FIG. 49 is a flowchart illustrating an example of verifying
slice integrity in accordance with the present invention;

FIG. 50A is a schematic block diagram of another embodi-
ment of a distributed computing system in accordance with
the present invention;

FIG. 50B is a schematic block diagram of another embodi-
ment of a dispersed storage network (DSN) system in accor-
dance with the present invention;

FIG.50C is a flowchart illustrating an example of verifying
a slice in accordance with the present invention;

FIG. 50D is a schematic block diagram of another embodi-
ment of a dispersed storage network (DSN) system in accor-
dance with the present invention;

FIG. 50E is a flowchart illustrating another example of
verifying a slice in accordance with the present invention;

FIG. 51A is a schematic block diagram of another embodi-
ment of a distributed computing system in accordance with
the present invention;

FIG. 51B is a diagram illustrating an example of a directory
in accordance with the present invention;

FIG. 51C is a set of diagrams illustrating examples of
segment allocation tables in accordance with the present
invention;

FIG. 51D is a flowchart illustrating an example of parallel
storage of data in accordance with the present invention;

FIG. 52A is a schematic block diagram of another embodi-
ment of a distributed storage and task execution unit in accor-
dance with the present invention;

FIG. 52B is a diagram illustrating an example of a slice
name structure in accordance with the present invention;

FIG. 52C is a diagram illustrating an example of a con-
tainer directory in accordance with the present invention; and

FIG. 52D is a flowchart illustrating an example of access-
ing memory in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a schematic block diagram of an embodiment of
a distributed computing system 10 that includes a user device
12 and/or a user device 14, a distributed storage and/or task
(DST) processing unit 16, a distributed storage and/or task
network (DSTN) managing unit 18, a DST integrity process-
ing unit 20, and a distributed storage and/or task network
(DSTN) module 22. The components of the distributed com-
puting system 10 are coupled via a network 24, which may
include one or more wireless and/or wire lined communica-
tion systems; one or more private intranet systems and/or
public internet systems; and/or one or more local area net-
works (LAN) and/or wide area networks (WAN).

The DSTN module 22 includes a plurality of distributed
storage and/or task (DST) execution units 36 that may be
located at geographically different sites (e.g., one in Chicago,
one in Milwaukee, etc.). Each of the DST execution units is
operable to store dispersed error encoded data and/or to
execute, in a distributed manner, one or more tasks on data.
The tasks may be a simple function (e.g., a mathematical
function, a logic function, an identify function, a find func-
tion, a search engine function, a replace function, etc.), a
complex function (e.g., compression, human and/or com-

US 9,292,212 B2

5

puter language translation, text-to-voice conversion, voice-
to-text conversion, etc.), multiple simple and/or complex
functions, one or more algorithms, one or more applications,
etc.

Each oftheuser devices 12-14, the DST processing unit 16,
the DSTN managing unit 18, and the DST integrity process-
ing unit 20 include a computing core 26 and may be a portable
computing device and/or a fixed computing device. A por-
table computing device may be a social networking device, a
gaming device, a cell phone, a smart phone, a personal digital
assistant, a digital music player, a digital video player, a
laptop computer, a handheld computer, a tablet, a video game
controller, and/or any other portable device that includes a
computing core. A fixed computing device may be a personal
computer (PC), a computer server, a cable set-top box, a
satellite receiver, a television set, a printer, a fax machine,
home entertainment equipment, a video game console, and/or
any type of home or office computing equipment. User device
12 and DST processing unit 16 are configured to include a
DST client module 34.

With respect to interfaces, each interface 30, 32, and 33
includes software and/or hardware to support one or more
communication links via the network 24 indirectly and/or
directly. For example, interface 30 supports a communication
link (e.g., wired, wireless, direct, via a LAN, via the network
24, etc.) between user device 14 and the DST processing unit
16. As another example, interface 32 supports communica-
tion links (e.g., a wired connection, a wireless connection, a
LAN connection, and/or any other type of connection to/from
the network 24) between user device 12 and the DSTN mod-
ule 22 and between the DST processing unit 16 and the DSTN
module 22. As yet another example, interface 33 supports a
communication link for each of the DSTN managing unit 18
and DST integrity processing unit 20 to the network 24.

The distributed computing system 10 is operable to support
dispersed storage (DS) error encoded data storage and
retrieval, to support distributed task processing on received
data, and/or to support distributed task processing on stored
data. In general and with respect to DS error encoded data
storage and retrieval, the distributed computing system 10
supports three primary operations: storage management, data
storage and retrieval (an example of which will be discussed
with reference to FIGS. 20-26), and data storage integrity
verification. In accordance with these three primary func-
tions, data can be encoded, distributedly stored in physically
different locations, and subsequently retrieved in a reliable
and secure manner. Such a system is tolerant of a significant
number of failures (e.g., up to a failure level, which may be
greater than or equal to a pillar width minus a decode thresh-
old minus one) that may result from individual storage device
failures and/or network equipment failures without loss of
data and without the need for a redundant or backup copy.
Further, the system allows the data to be stored for an indefi-
nite period of time without data loss and does so in a secure
manner (e.g., the system is very resistant to attempts at hack-
ing the data).

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, ifa second type of user device 14 has data 40 to store
in the DSTN module 22, it sends the data 40 to the DST
processing unit 16 via its interface 30. The interface 30 func-
tions to mimic a conventional operating system (OS) file
system interface (e.g., network file system (NFS), flash file
system (FFS), disk file system (DFS), file transfer protocol
(FTP), web-based distributed authoring and versioning
(WebDAV), etc.) and/or a block memory interface (e.g., small
computer system interface (SCSI), internet small computer

10

15

20

25

30

35

40

45

50

55

60

65

6

system interface (iISCSI), etc.). In addition, the interface 30
may attach a user identification code (ID) to the data 40.

To support storage management, the DSTN managing unit
18 performs DS management services. One such DS manage-
ment service includes the DSTN managing unit 18 establish-
ing distributed data storage parameters (e.g., vault creation,
distributed storage parameters, security parameters, billing
information, user profile information, etc.) for a user device
12-14 individually or as part of a group of user devices. For
example, the DSTN managing unit 18 coordinates creation of
a vault (e.g., a virtual memory block) within memory of the
DSTN module 22 for a user device, a group of devices, or for
public access and establishes per vault dispersed storage (DS)
error encoding parameters for a vault. The DSTN managing
unit 18 may facilitate storage of DS error encoding param-
eters for each vault ofa plurality of vaults by updating registry
information for the distributed computing system 10. The
facilitating includes storing updated registry information in
one or more of the DSTN module 22, the user device 12, the
DST processing unit 16, and the DST integrity processing
unit 20.

The DS error encoding parameters (e.g. or dispersed stor-
age error coding parameters) include data segmenting infor-
mation (e.g., how many segments data (e.g., a file, a group of
files, a data block, etc.) is divided into), segment security
information (e.g., per segment encryption, compression,
integrity checksum, etc.), error coding information (e.g., pil-
lar width, decode threshold, read threshold, write threshold,
etc.), slicing information (e.g., the number of encoded data
slices that will be created for each data segment); and slice
security information (e.g., per encoded data slice encryption,
compression, integrity checksum, etc.).

The DSTN managing unit 18 creates and stores user profile
information (e.g., an access control list (ACL)) in local
memory and/or within memory of the DSTN module 22. The
user profile information includes authentication information,
permissions, and/or the security parameters. The security
parameters may include encryption/decryption scheme, one
or more encryption keys, key generation scheme, and/or data
encoding/decoding scheme.

The DSTN managing unit 18 creates billing information
for a particular user, a user group, a vault access, public vault
access, etc. For instance, the DSTN managing unit 18 tracks
the number of times a user accesses a private vault and/or
public vaults, which can be used to generate a per-access
billing information. In another instance, the DSTN managing
unit 18 tracks the amount of data stored and/or retrieved by a
user device and/or a user group, which can be used to generate
a per-data-amount billing information.

Another DS management service includes the DSTN man-
aging unit 18 performing network operations, network
administration, and/or network maintenance. Network opera-
tions includes authenticating user data allocation requests
(e.g., read and/or write requests), managing creation of
vaults, establishing authentication credentials for user
devices, adding/deleting components (e.g., user devices, DST
execution units, and/or DST processing units) from the dis-
tributed computing system 10, and/or establishing authenti-
cation credentials for DST execution units 36. Network
administration includes monitoring devices and/or units for
failures, maintaining vault information, determining device
and/or unit activation status, determining device and/or unit
loading, and/or determining any other system level operation
that affects the performance level of the system 10. Network
maintenance includes facilitating replacing, upgrading,
repairing, and/or expanding a device and/or unit ofthe system
10.

US 9,292,212 B2

7

To support data storage integrity verification within the
distributed computing system 10, the DST integrity process-
ing unit 20 performs rebuilding of ‘bad’ or missing encoded
data slices. At a high level, the DST integrity processing unit
20 performs rebuilding by periodically attempting to retrieve/
list encoded data slices, and/or slice names of the encoded
data slices, from the DSTN module 22. For retrieved encoded
slices, they are checked for errors due to data corruption,
outdated version, etc. If a slice includes an error, it is flagged
as a ‘bad’slice. For encoded data slices that were not received
and/or not listed, they are flagged as missing slices. Bad
and/or missing slices are subsequently rebuilt using other
retrieved encoded data slices that are deemed to be good
slices to produce rebuilt slices. The rebuilt slices are stored in
memory of the DSTN module 22. Note that the DST integrity
processing unit 20 may be a separate unit as shown, it may be
included in the DSTN module 22, it may be included in the
DST processing unit 16, and/or distributed among the DST
execution units 36.

To support distributed task processing on received data, the
distributed computing system 10 has two primary operations:
DST (distributed storage and/or task processing) manage-
ment and DST execution on received data (an example of
which will be discussed with reference to FIGS. 3-19). With
respect to the storage portion of the DST management, the
DSTN managing unit 18 functions as previously described.
With respect to the tasking processing of the DST manage-
ment, the DSTN managing unit 18 performs distributed task
processing (DTP) management services. One such DTP man-
agement service includes the DSTN managing unit 18 estab-
lishing DTP parameters (e.g., user-vault affiliation informa-
tion, billing information, user-task information, etc.) for a
user device 12-14 individually or as part of a group of user
devices.

Another DTP management service includes the DSTN
managing unit 18 performing DTP network operations, net-
work administration (which is essentially the same as
described above), and/or network maintenance (which is
essentially the same as described above). Network operations
include, but are not limited to, authenticating user task pro-
cessing requests (e.g., valid request, valid user, etc.), authen-
ticating results and/or partial results, establishing DTP
authentication credentials for user devices, adding/deleting
components (e.g., user devices, DST execution units, and/or
DST processing units) from the distributed computing sys-
tem, and/or establishing DTP authentication credentials for
DST execution units.

To support distributed task processing on stored data, the
distributed computing system 10 has two primary operations:
DST (distributed storage and/or task) management and DST
execution on stored data. With respect to the DST execution
on stored data, if the second type of user device 14 has a task
request 38 for execution by the DSTN module 22, it sends the
task request 38 to the DST processing unit 16 via its interface
30. An example of DST execution on stored data will be
discussed in greater detail with reference to FIGS. 27-39.
With respect to the DST management, it is substantially simi-
lar to the DST management to support distributed task pro-
cessing on received data.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50, a
memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface module 60, at least one 10 device interface module
62, a read only memory (ROM) basic input output system
(BIOS) 64, and one or more memory interface modules. The

10

15

20

25

30

35

40

45

50

55

60

65

8

one or more memory interface module(s) includes one or
more of a universal serial bus (USB) interface module 66, a
host bus adapter (HBA) interface module 68, a network inter-
face module 70, a flash interface module 72, a hard drive
interface module 74, and a DSTN interface module 76.

The DSTN interface module 76 functions to mimic a con-
ventional operating system (OS) file system interface (e.g.,
network file system (NFS), flash file system (FFS), disk file
system (DFS), file transfer protocol (FTP), web-based dis-
tributed authoring and versioning (WebDAV), etc.) and/or a
block memory interface (e.g., small computer system inter-
face (SCSI), internet small computer system interface
(iSCSI), etc.). The DSTN interface module 76 and/or the
network interface module 70 may function as the interface 30
ofthe user device 14 of FIG. 1. Further note that the IO device
interface module 62 and/or the memory interface modules
may be collectively or individually referred to as 10 ports.

FIG. 3 is a diagram of an example of the distributed com-
puting system performing a distributed storage and task pro-
cessing operation. The distributed computing system
includes a DST (distributed storage and/or task) client mod-
ule 34 (which may be in user device 14 and/or in DST pro-
cessing unit 16 of FIG. 1), a network 24, a plurality of DST
execution units 1-n that includes two or more DST execution
units 36 of FIG. 1 (which form at least a portion of DSTN
module 22 of FIG. 1), a DST managing module (not shown),
and a DST integrity verification module (not shown). The
DST client module 34 includes an outbound DST processing
section 80 and an inbound DST processing section 82. Each
of the DST execution units 1-n includes a controller 86, a
processing module 84, memory 88, a DT (distributed task)
execution module 90, and a DST client module 34.

In an example of operation, the DST client module 34
receives data 92 and one or more tasks 94 to be performed
upon the data 92. The data 92 may be of any size and of any
content, where, due to the size (e.g., greater than a few Terra-
Bytes), the content (e.g., secure data, etc.), and/or task(s)
(e.g., MIPS intensive), distributed processing of the task(s) on
the data is desired. For example, the data 92 may be one or
more digital books, a copy of a company’s emails, a large-
scale Internet search, a video security file, one or more enter-
tainment video files (e.g., television programs, movies, etc.),
data files, and/or any other large amount of data (e.g., greater
than a few Terra-Bytes).

Within the DST client module 34, the outbound DST pro-
cessing section 80 receives the data 92 and the task(s) 94. The
outbound DST processing section 80 processes the data 92 to
produce slice groupings 96. As an example of such process-
ing, the outbound DST processing section 80 partitions the
data 92 into a plurality of data partitions. For each data par-
tition, the outbound DST processing section 80 dispersed
storage (DS) error encodes the data partition to produce
encoded data slices and groups the encoded data slices into a
slice grouping 96. In addition, the outbound DST processing
section 80 partitions the task 94 into partial tasks 98, where
the number of partial tasks 98 may correspond to the number
of'slice groupings 96.

The outbound DST processing section 80 then sends, via
the network 24, the slice groupings 96 and the partial tasks 98
to the DST execution units 1-n of the DSTN module 22 of
FIG. 1. Forexample, the outbound DST processing section 80
sends slice group 1 and partial task 1 to DST execution unit 1.
As another example, the outbound DST processing section 80
sends slice group #n and partial task #n to DST execution
unit #n.

Each DST execution unit performs its partial task 98 upon
its slice group 96 to produce partial results 102. For example,

US 9,292,212 B2

9

DST execution unit #1 performs partial task #1 on slice
group #1 to produce a partial result #1, for results. As a more
specific example, slice group #1 corresponds to a data parti-
tion of a series of digital books and the partial task #1 corre-
sponds to searching for specific phrases, recording where the
phrase is found, and establishing a phrase count. In this more
specific example, the partial result #1 includes information as
to where the phrase was found and includes the phrase count.

Upon completion of generating their respective partial
results 102, the DST execution units send, via the network 24,
their partial results 102 to the inbound DST processing sec-
tion 82 of the DST client module 34. The inbound DST
processing section 82 processes the received partial results
102 to produce a result 104. Continuing with the specific
example of the preceding paragraph, the inbound DST pro-
cessing section 82 combines the phrase count from each of the
DST execution units 36 to produce a total phrase count. In
addition, the inbound DST processing section 82 combines
the ‘where the phrase was found’ information from each of
the DST execution units 36 within their respective data par-
titions to produce ‘where the phrase was found’ information
for the series of digital books.

In another example of operation, the DST client module 34
requests retrieval of stored data within the memory of the
DST execution units 36 (e.g., memory of the DSTN module).
In this example, the task 94 is retrieve data stored in the
memory of the DSTN module. Accordingly, the outbound
DST processing section 80 converts the task 94 into a plural-
ity of partial tasks 98 and sends the partial tasks 98 to the
respective DST execution units 1-n.

In response to the partial task 98 of retrieving stored data,
a DST execution unit 36 identifies the corresponding encoded
data slices 100 and retrieves them. For example, DST execu-
tion unit #1 receives partial task #1 and retrieves, in response
thereto, retrieved slices #1. The DST execution units 36 send
their respective retrieved slices 100 to the inbound DST pro-
cessing section 82 via the network 24.

The inbound DST processing section 82 converts the
retrieved slices 100 into data 92. For example, the inbound
DST processing section 82 de-groups the retrieved slices 100
to produce encoded slices per data partition. The inbound
DST processing section 82 then DS error decodes the
encoded slices per data partition to produce data partitions.
The inbound DST processing section 82 de-partitions the data
partitions to recapture the data 92.

FIG. 4 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) processing
section 80 of a DST client module 34 FIG. 1 coupled to a
DSTN module 22 of a FIG. 1 (e.g., a plurality of n DST
execution units 36) via a network 24. The outbound DST
processing section 80 includes a data partitioning module
110, a dispersed storage (DS) error encoding module 112, a
grouping selector module 114, a control module 116, and a
distributed task control module 118.

In an example of operation, the data partitioning module
110 partitions data 92 into a plurality of data partitions 120.
The number of partitions and the size of the partitions may be
selected by the control module 116 via control 160 based on
the data 92 (e.g., its size, its content, etc.), a corresponding
task 94 to be performed (e.g., simple, complex, single step,
multiple steps, etc.), DS encoding parameters (e.g., pillar
width, decode threshold, write threshold, segment security
parameters, slice security parameters, etc.), capabilities of the
DST execution units 36 (e.g., processing resources, availabil-
ity of processing recourses, etc.), and/or as may be inputted
by a user, system administrator, or other operator (human or
automated). For example, the data partitioning module 110

10

15

20

25

30

35

40

45

50

55

60

65

10
partitions the data 92 (e.g., 100 Terra-Bytes) into 100,000
data segments, each being 1 Giga-Byte in size. Alternatively,
the data partitioning module 110 partitions the data 92 into a
plurality of data segments, where some of data segments are
of a different size, are of the same size, or a combination
thereof.

The DS error encoding module 112 receives the data par-
titions 120 in a serial manner, a parallel manner, and/or a
combination thereof. For each data partition 120, the DS error
encoding module 112 DS error encodes the data partition 120
in accordance with control information 160 from the control
module 116 to produce encoded data slices 122. The DS error
encoding includes segmenting the data partition into data
segments, segment security processing (e.g., encryption,
compression, watermarking, integrity check (e.g., CRC),
etc.), error encoding, slicing, and/or per slice security pro-
cessing (e.g., encryption, compression, watermarking, integ-
rity check (e.g., CRC), etc.). The control information 160
indicates which steps of the DS error encoding are active for
a given data partition and, for active steps, indicates the
parameters for the step. For example, the control information
160 indicates that the error encoding is active and includes
error encoding parameters (e.g., pillar width, decode thresh-
old, write threshold, read threshold, type of error encoding,
etc.).

The grouping selector module 114 groups the encoded
slices 122 of a data partition into a set of slice groupings 96.
The number of slice groupings corresponds to the number of
DST execution units 36 identified for a particular task 94. For
example, if five DST execution units 36 are identified for the
particular task 94, the grouping selector module groups the
encoded slices 122 of a data partition into five slice groupings
96. The grouping selector module 114 outputs the slice
groupings 96 to the corresponding DST execution units 36 via
the network 24.

The distributed task control module 118 receives the task
94 and converts the task 94 into a set of partial tasks 98. For
example, the distributed task control module 118 receives a
task to find where in the data (e.g., a series of books) a phrase
occurs and a total count of the phrase usage in the data. In this
example, the distributed task control module 118 replicates
the task 94 for each DST execution unit 36 to produce the
partial tasks 98. In another example, the distributed task con-
trol module 118 receives a task to find where in the data a first
phrase occurs, where in the data a second phrase occurs, and
atotal count for each phrase usage in the data. In this example,
the distributed task control module 118 generates a first set of
partial tasks 98 for finding and counting the first phrase and a
second set of partial tasks for finding and counting the second
phrase. The distributed task control module 118 sends respec-
tive first and/or second partial tasks 98 to each DST execution
unit 36.

FIG. 5 is a logic diagram of an example of a method for
outbound distributed storage and task (DST) processing that
begins at step 126 where a DST client module receives data
and one or more corresponding tasks. The method continues
at step 128 where the DST client module determines a number
of DST units to support the task for one or more data parti-
tions. For example, the DST client module may determine the
number of DST units to support the task based on the size of
the data, the requested task, the content of the data, a prede-
termined number (e.g., user indicated, system administrator
determined, etc.), available DST units, capability of the DST
units, and/or any other factor regarding distributed task pro-
cessing of the data. The DST client module may select the
same DST units for each data partition, may select different
DST units for the data partitions, or a combination thereof.

US 9,292,212 B2

11

The method continues at step 130 where the DST client
module determines processing parameters of the data based
on the number of DST units selected for distributed task
processing. The processing parameters include data partition-
ing information, DS encoding parameters, and/or slice group-
ing information. The data partitioning information includes a
number of data partitions, size of each data partition, and/or
organization of the data partitions (e.g., number of data
blocks in a partition, the size of the data blocks, and arrange-
ment of the data blocks). The DS encoding parameters
include segmenting information, segment security informa-
tion, error encoding information (e.g., dispersed storage error
encoding function parameters including one or more of pillar
width, decode threshold, write threshold, read threshold, gen-
erator matrix), slicing information, and/or per slice security
information. The slice grouping information includes infor-
mation regarding how to arrange the encoded data slices into
groups for the selected DST units. As a specific example, if
the DST client module determines that five DST units are
needed to support the task, then it determines that the error
encoding parameters include a pillar width of five and a
decode threshold of three.

The method continues at step 132 where the DST client
module determines task partitioning information (e.g., how to
partition the tasks) based on the selected DST units and data
processing parameters. The data processing parameters
include the processing parameters and DST unit capability
information. The DST unit capability information includes
the number of DT (distributed task) execution units, execu-
tion capabilities of each DT execution unit (e.g., MIPS capa-
bilities, processing resources (e.g., quantity and capability of
microprocessors, CPUs, digital signal processors, co-proces-
sor, microcontrollers, arithmetic logic circuitry, and/or any
other analog and/or digital processing circuitry), availability
of the processing resources, memory information (e.g., type,
size, availability, etc.), and/or any information germane to
executing one or more tasks.

The method continues at step 134 where the DST client
module processes the data in accordance with the processing
parameters to produce slice groupings. The method continues
at step 136 where the DST client module partitions the task
based on the task partitioning information to produce a set of
partial tasks. The method continues at step 138 where the
DST client module sends the slice groupings and the corre-
sponding partial tasks to respective DST units.

FIG. 6 is a schematic block diagram of an embodiment of
the dispersed storage (DS) error encoding module 112 of an
outbound distributed storage and task (DST) processing sec-
tion. The DS error encoding module 112 includes a segment
processing module 142, a segment security processing mod-
ule 144, an error encoding module 146, a slicing module 148,
and a per slice security processing module 150. Each ofthese
modules is coupled to a control module 116 to receive control
information 160 therefrom.

In an example of operation, the segment processing mod-
ule 142 receives a data partition 120 from a data partitioning
module and receives segmenting information as the control
information 160 from the control module 116. The segment-
ing information indicates how the segment processing mod-
ule 142 is to segment the data partition 120. For example, the
segmenting information indicates how many rows to segment
the data based on a decode threshold of an error encoding
scheme, indicates how many columns to segment the data into
based on a number and size of data blocks within the data
partition 120, and indicates how many columns to include in
a data segment 152. The segment processing module 142

10

15

20

25

30

35

40

45

50

55

60

65

12

segments the data 120 into data segments 152 in accordance
with the segmenting information.

The segment security processing module 144, when
enabled by the control module 116, secures the data segments
152 based on segment security information received as con-
trol information 160 from the control module 116. The seg-
ment security information includes data compression,
encryption, watermarking, integrity check (e.g., cyclic redun-
dancy check (CRC), etc.), and/or any other type of digital
security. For example, when the segment security processing
module 144 is enabled, it may compress a data segment 152,
encrypt the compressed data segment, and generate a CRC
value for the encrypted data segment to produce a secure data
segment 154. When the segment security processing module
144 is not enabled, it passes the data segments 152 to the error
encoding module 146 or is bypassed such that the data seg-
ments 152 are provided to the error encoding module 146.

The error encoding module 146 encodes the secure data
segments 154 in accordance with error correction encoding
parameters received as control information 160 from the con-
trol module 116. The error correction encoding parameters
(e.g., also referred to as dispersed storage error coding param-
eters) include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an online coding algorithm, an
information dispersal algorithm, etc.), a pillar width, a decode
threshold, a read threshold, a write threshold, etc. For
example, the error correction encoding parameters identify a
specific error correction encoding scheme, specifies a pillar
width of five, and specifies a decode threshold of three. From
these parameters, the error encoding module 146 encodes a
data segment 154 to produce an encoded data segment 156.

The slicing module 148 slices the encoded data segment
156 in accordance with the pillar width of the error correction
encoding parameters received as control information 160. For
example, if the pillar width is five, the slicing module 148
slices an encoded data segment 156 into a set of five encoded
data slices. As such, for a plurality of encoded data segments
156 for a given data partition, the slicing module outputs a
plurality of sets of encoded data slices 158.

The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice 158 based on slice security information received as
control information 160 from the control module 116. The
slice security information includes data compression, encryp-
tion, watermarking, integrity check (e.g., CRC, etc.), and/or
any other type of digital security. For example, when the per
slice security processing module 150 is enabled, it com-
presses an encoded data slice 158, encrypts the compressed
encoded data slice, and generates a CRC value for the
encrypted encoded data slice to produce a secure encoded
data slice 122. When the per slice security processing module
150 is not enabled, it passes the encoded data slices 158 or is
bypassed such that the encoded data slices 158 are the output
of the DS error encoding module 112. Note that the control
module 116 may be omitted and each module stores its own
parameters.

FIG. 7 is a diagram of an example of a segment processing
of a dispersed storage (DS) error encoding module. In this
example, a segment processing module 142 receives a data
partition 120 that includes 45 data blocks (e.g., d1-d45),
receives segmenting information (i.e., control information
160) from a control module, and segments the data partition
120 in accordance with the control information 160 to pro-
duce data segments 152. Each data block may be of the same
size as other data blocks or of a different size. In addition, the
size of each data block may be a few bytes to megabytes of

US 9,292,212 B2

13

data. As previously mentioned, the segmenting information
indicates how many rows to segment the data partition into,
indicates how many columns to segment the data partition
into, and indicates how many columns to include in a data
segment.

In this example, the decode threshold of the error encoding
scheme is three; as such the number of rows to divide the data
partition into is three. The number of columns for each row is
set to 15, which is based on the number and size of data
blocks. The data blocks of the data partition are arranged in
rows and columns in a sequential order (i.e., the first row
includes the first 15 data blocks; the second row includes the
second 15 data blocks; and the third row includes the last 15
data blocks).

With the data blocks arranged into the desired sequential
order, they are divided into data segments based on the seg-
menting information. In this example, the data partition is
divided into 8 data segments; the first 7 include 2 columns of
three rows and the last includes 1 column of three rows. Note
that the first row of the 8 data segments is in sequential order
of the first 15 data blocks; the second row of the 8 data
segments in sequential order of the second 15 datablocks; and
the third row of the 8 data segments in sequential order of the
last 15 data blocks. Note that the number of data blocks, the
grouping of the data blocks into segments, and size of the data
blocks may vary to accommodate the desired distributed task
processing function.

FIG. 8 is a diagram of an example of error encoding and
slicing processing of the dispersed error encoding processing
the data segments of FIG. 7. In this example, data segment 1
includes 3 rows with each row being treated as one word for
encoding. As such, data segment 1 includes three words for
encoding: word 1 including data blocks d1 and d2, word 2
including data blocks d16 and d17, and word 3 including data
blocks d31 and d32. Each of data segments 2-7 includes three
words where each word includes two data blocks. Data seg-
ment 8 includes three words where each word includes a
single data block (e.g., d15, d30, and d45).

In operation, an error encoding module 146 and a slicing
module 148 convert each data segment into a set of encoded
data slices in accordance with error correction encoding
parameters as control information 160. More specifically,
when the error correction encoding parameters indicate a
unity matrix Reed-Solomon based encoding algorithm, 5 pil-
lars, and decode threshold of 3, the first three encoded data
slices of the set of encoded data slices for a data segment are
substantially similar to the corresponding word of the data
segment. For instance, when the unity matrix Reed-Solomon
based encoding algorithm is applied to data segment 1, the
content of the first encoded data slice (DS1_d1&2) of the first
set of encoded data slices (e.g., corresponding to data seg-
ment 1) is substantially similar to content of the first word
(e.g., d1 & d2); the content of the second encoded data slice
(DS1_d16&17) of the first set of encoded data slices is sub-
stantially similar to content of the second word (e.g., d16 &
d17); and the content of the third encoded data slice
(DS1_d31&32) of the first set of encoded data slices is sub-
stantially similar to content of the third word (e.g., d31 &
d32).

The content of the fourth and fifth encoded data slices (e.g.,
ES1_1 and ES1_2) of the first set of encoded data slices
include error correction data based on the first-third words of
the first data segment. With such an encoding and slicing
scheme, retrieving any three of the five encoded data slices
allows the data segment to be accurately reconstructed.

The encoding and slicing of data segments 2-7 yield sets of
encoded data slices similar to the set of encoded data slices of

30

40

45

50

14

data segment 1. For instance, the content of the first encoded
data slice (DS2_d3&4) of the second set of encoded data
slices (e.g., corresponding to data segment 2) is substantially
similar to content of the first word (e.g., d3 & d4); the content
of the second encoded data slice (DS2_d18&19) of the sec-
ond set of encoded data slices is substantially similar to con-
tent of the second word (e.g., d18 & d19); and the content of
the third encoded data slice (DS2_d33&34) of the second set
of'encoded data slices is substantially similar to content of the
third word (e.g., d33 & d34). The content of the fourth and
fifth encoded data slices (e.g., ES1_1 and ES1_2) of the
second set of encoded data slices includes error correction
databased on the first-third words of the second data segment.

FIG. 9 is a diagram of an example of grouping selection
processing of an outbound distributed storage and task (DST)
processing in accordance with group selection information as
control information 160 from a control module. Encoded
slices for data partition 122 are grouped in accordance with
the control information 160 to produce slice groupings 96. In
this example, a grouping selector module 114 organizes the
encoded data slices into five slice groupings (e.g., one for
each DST execution unit of a distributed storage and task
network (DSTN) module). As a specific example, the group-
ing selector module 114 creates a first slice grouping for a
DST execution unit #1, which includes first encoded slices of
each of the sets of encoded slices. As such, the first DST
execution unit receives encoded data slices corresponding to
data blocks 1-15 (e.g., encoded data slices of contiguous
data).

The grouping selector module 114 also creates a second
slice grouping for a DST execution unit #2, which includes
second encoded slices of each of the sets of encoded slices. As
such, the second DST execution unit receives encoded data
slices corresponding to data blocks 16-30. The grouping
selector module 114 further creates a third slice grouping for
DST execution unit #3, which includes third encoded slices of
each of the sets of encoded slices. As such, the third DST
execution unit receives encoded data slices corresponding to
data blocks 31-45.

The grouping selector module 114 creates a fourth slice
grouping for DST execution unit #4, which includes fourth
encoded slices of each of the sets of encoded slices. As such,
the fourth DST execution unit receives encoded data slices
corresponding to first error encoding information (e.g.,
encoded data slices of error coding (EC) data). The grouping
selector module 114 further creates a fifth slice grouping for
DST execution unit #5, which includes fifth encoded slices of
each of the sets of encoded slices. As such, the fifth DST
execution unit receives encoded data slices corresponding to
second error encoding information.

FIG. 10 is a diagram of an example of converting data 92
into slice groups that expands on the preceding figures. As
shown, the data 92 is partitioned in accordance with a parti-
tioning function 164 into a plurality of data partitions (1-x,
where x is an integer greater than 4). Each data partition (or
chunkset of data) is encoded and grouped into slice groupings
as previously discussed by an encoding and grouping func-
tion 166. For a given data partition, the slice groupings are
sent to distributed storage and task (DST) execution units.
From data partition to data partition, the ordering of the slice
groupings to the DST execution units may vary.

For example, the slice groupings of data partition #1 is sent
to the DST execution units such that the first DST execution
receives first encoded data slices of each of the sets of
encoded data slices, which corresponds to a first continuous
data chunk of the first data partition (e.g., refer to FIG. 9), a
second DST execution receives second encoded data slices of

US 9,292,212 B2

15

each of'the sets of encoded data slices, which corresponds to
a second continuous data chunk of the first data partition, etc.

For the second data partition, the slice groupings may be
sent to the DST execution units in a different order than it was
done for the first data partition. For instance, the first slice
grouping of the second data partition (e.g., slice group 2_1) is
sent to the second DST execution unit; the second slice group-
ing of the second data partition (e.g., slice group 2_2) is sent
to the third DST execution unit; the third slice grouping of the
second data partition (e.g., slice group 2_3) is sent to the
fourth DST execution unit; the fourth slice grouping of the
second data partition (e.g., slice group 2_4, which includes
first error coding information) is sent to the fifth DST execu-
tion unit; and the fifth slice grouping of the second data
partition (e.g., slice group 2_5, which includes second error
coding information) is sent to the first DST execution unit.

The pattern of sending the slice groupings to the set of DST
execution units may vary in a predicted pattern, a random
pattern, and/or a combination thereof from data partition to
data partition. In addition, from data partition to data parti-
tion, the set of DST execution units may change. For example,
for the first data partition, DST execution units 1-5 may be
used; for the second data partition, DST execution units 6-10
may be used; for the third data partition, DST execution units
3-7 may be used; etc. As is also shown, the task is divided into
partial tasks that are sent to the DST execution units in con-
junction with the slice groupings of the data partitions.

FIG. 11 is a schematic block diagram of an embodiment of
a DST (distributed storage and/or task) execution unit that
includes an interface 169, a controller 86, memory 88, one or
more DT (distributed task) execution modules 90, and a DST
client module 34. The memory 88 is of sufficient size to store
a significant number of encoded data slices (e.g., thousands of
slices to hundreds-of-millions of slices) and may include one
or more hard drives and/or one or more solid-state memory
devices (e.g., flash memory, DRAM, etc.).

In an example of storing a slice group, the DST execution
module receives a slice grouping 96 (e.g., slice group #1) via
interface 169. The slice grouping 96 includes, per partition,
encoded data slices of contiguous data or encoded data slices
of'error coding (EC) data. For slice group #1, the DST execu-
tion module receives encoded data slices of contiguous data
for partitions #1 and #x (and potentially others between 3 and
x) and receives encoded data slices of EC data for partitions
#2 and #3 (and potentially others between 3 and x). Examples
of encoded data slices of contiguous data and encoded data
slices of error coding (EC) data are discussed with reference
to FIG. 9. The memory 88 stores the encoded data slices of
slice groupings 96 in accordance with memory control infor-
mation 174 it receives from the controller 86.

The controller 86 (e.g., a processing module, a CPU, etc.)
generates the memory control information 174 based on a
partial task(s) 98 and distributed computing information (e.g.,
user information (e.g., user ID, distributed computing per-
missions, data access permission, etc.), vault information
(e.g., virtual memory assigned to user, user group, temporary
storage for task processing, etc.), task validation information,
etc.). For example, the controller 86 interprets the partial
task(s) 98 in light of the distributed computing information to
determine whether a requestor is authorized to perform the
task 98, is authorized to access the data, and/or is authorized
to perform the task on this particular data. When the requestor
is authorized, the controller 86 determines, based on the task
98 and/or another input, whether the encoded data slices of
the slice grouping 96 are to be temporarily stored or perma-
nently stored. Based on the foregoing, the controller 86 gen-
erates the memory control information 174 to write the

10

15

20

25

30

35

40

45

50

55

60

65

16

encoded data slices of the slice grouping 96 into the memory
88 and to indicate whether the slice grouping 96 is perma-
nently stored or temporarily stored.

With the slice grouping 96 stored in the memory 88, the
controller 86 facilitates execution of the partial task(s) 98. In
an example, the controller 86 interprets the partial task 98 in
light of the capabilities of the DT execution module(s) 90.
The capabilities include one or more of MIPS capabilities,
processing resources (e.g., quantity and capability of micro-
processors, CPUs, digital signal processors, co-processor,
microcontrollers, arithmetic logic circuitry, and/or any other
analog and/or digital processing circuitry), availability of the
processing resources, etc. If the controller 86 determines that
the DT execution module(s) 90 have sufficient capabilities, it
generates task control information 176.

The task control information 176 may be a generic instruc-
tion (e.g., perform the task on the stored slice grouping) or a
series of operational codes. In the former instance, the DT
execution module 90 includes a co-processor function spe-
cifically configured (fixed or programmed) to perform the
desired task 98. In the latter instance, the DT execution mod-
ule 90 includes a general processor topology where the con-
troller stores an algorithm corresponding to the particular task
98. In this instance, the controller 86 provides the operational
codes (e.g., assembly language, source code of a program-
ming language, object code, etc.) of the algorithm to the DT
execution module 90 for execution.

Depending on the nature of the task 98, the DT execution
module 90 may generate intermediate partial results 102 that
are stored in the memory 88 or in a cache memory (not shown)
within the DT execution module 90. In either case, when the
DT execution module 90 completes execution of the partial
task 98, it outputs one or more partial results 102. The partial
results 102 may also be stored in memory 88.

If, when the controller 86 is interpreting whether capabili-
ties of the DT execution module(s) 90 can support the partial
task 98, the controller 86 determines that the DT execution
module(s) 90 cannot adequately support the task 98 (e.g.,
does not have the right resources, does not have sufficient
available resources, available resources would be too slow,
etc.), it then determines whether the partial task 98 should be
fully offloaded or partially offloaded.

If the controller 86 determines that the partial task 98
should be fully offloaded, it generates DST control informa-
tion 178 and provides it to the DST client module 34. The
DST control information 178 includes the partial task 98,
memory storage information regarding the slice grouping 96,
and distribution instructions. The distribution instructions
instruct the DST client module 34 to divide the partial task 98
into sub-partial tasks 172, to divide the slice grouping 96 into
sub-slice groupings 170, and identify other DST execution
units. The DST client module 34 functions in a similar man-
ner as the DST client module 34 of FIGS. 3-10 to produce the
sub-partial tasks 172 and the sub-slice groupings 170 in
accordance with the distribution instructions.

The DST client module 34 receives DST feedback 168
(e.g., sub-partial results), via the interface 169, from the DST
execution units to which the task was offloaded. The DST
client module 34 provides the sub-partial results to the DST
execution unit, which processes the sub-partial results to pro-
duce the partial result(s) 102.

If the controller 86 determines that the partial task 98
should be partially offloaded, it determines what portion of
the task 98 and/or slice grouping 96 should be processed
locally and what should be offloaded. For the portion that is
being locally processed, the controller 86 generates task con-
trol information 176 as previously discussed. For the portion

US 9,292,212 B2

17

that is being offloaded, the controller 86 generates DST con-
trol information 178 as previously discussed.

When the DST client module 34 receives DST feedback
168 (e.g., sub-partial results) from the DST executions units
to which a portion of the task was offloaded, it provides the
sub-partial results to the DT execution module 90. The DT
execution module 90 processes the sub-partial results with the
sub-partial results it created to produce the partial result(s)
102.

The memory 88 may be further utilized to retrieve one or
more of stored slices 100, stored results 104, partial results
102 when the DT execution module 90 stores partial results
102 and/or results 104 in the memory 88. For example, when
the partial task 98 includes a retrieval request, the controller
86 outputs the memory control 174 to the memory 88 to
facilitate retrieval of slices 100 and/or results 104.

FIG. 12 is a schematic block diagram of an example of
operation of a distributed storage and task (DST) execution
unit storing encoded data slices and executing a task thereon.
To store the encoded data slices of a partition 1 of slice
grouping 1, a controller 86 generates write commands as
memory control information 174 such that the encoded slices
are stored in desired locations (e.g., permanent or temporary)
within memory 88.

Once the encoded slices are stored, the controller 86 pro-
vides task control information 176 to a distributed task (DT)
execution module 90. As a first step of executing the task in
accordance with the task control information 176, the DT
execution module 90 retrieves the encoded slices from
memory 88. The DT execution module 90 then reconstructs
contiguous data blocks of a data partition. As shown for this
example, reconstructed contiguous data blocks of data parti-
tion 1 include data blocks 1-15 (e.g., d1-d15).

With the contiguous data blocks reconstructed, the DT
execution module 90 performs the task on the reconstructed
contiguous data blocks. For example, the task may be to
search the reconstructed contiguous data blocks for a particu-
lar word or phrase, identify where in the reconstructed con-
tiguous data blocks the particular word or phrase occurred,
and/or count the occurrences of the particular word or phrase
on the reconstructed contiguous data blocks. The DST execu-
tion unit continues in a similar manner for the encoded data
slices of other partitions in slice grouping 1. Note that with
using the unity matrix error encoding scheme previously
discussed, if the encoded data slices of contiguous data are
uncorrupted, the decoding of them is a relatively straightfor-
ward process of extracting the data.

If, however, an encoded data slice of contiguous data is
corrupted (or missing), it can be rebuilt by accessing other
DST execution units that are storing the other encoded data
slices of the set of encoded data slices of the corrupted
encoded data slice. In this instance, the DST execution unit
having the corrupted encoded data slices retrieves at least
three encoded data slices (of contiguous data and of error
coding data) in the set from the other DST execution units
(recall for this example, the pillar width is 5 and the decode
threshold is 3). The DST execution unit decodes the retrieved
data slices using the DS error encoding parameters to recap-
ture the corresponding data segment. The DST execution unit
then re-encodes the data segment using the DS error encoding
parameters to rebuild the corrupted encoded data slice. Once
the encoded data slice is rebuilt, the DST execution unit
functions as previously described.

FIG. 13 is a schematic block diagram of an embodiment of
an inbound distributed storage and/or task (DST) processing
section 82 of a DST client module coupled to DST execution
units of a distributed storage and task network (DSTN) mod-

30

40

45

55

18

ule via a network 24. The inbound DST processing section 82
includes a de-grouping module 180, a DS (dispersed storage)
error decoding module 182, a data de-partitioning module
184, a control module 186, and a distributed task control
module 188. Note that the control module 186 and/or the
distributed task control module 188 may be separate modules
from corresponding ones of outbound DST processing sec-
tion or may be the same modules.

In an example of operation, the DST execution units have
completed execution of corresponding partial tasks on the
corresponding slice groupings to produce partial results 102.
The inbound DST processing section 82 receives the partial
results 102 via the distributed task control module 188. The
inbound DST processing section 82 then processes the partial
results 102 to produce a final result, or results 104. For
example, if the task was to find a specific word or phrase
within data, the partial results 102 indicate where in each of
the prescribed portions of the data the corresponding DST
execution units found the specific word or phrase. The dis-
tributed task control module 188 combines the individual
partial results 102 for the corresponding portions of the data
into a final result 104 for the data as a whole.

Inanother example of operation, the inbound DST process-
ing section 82 is retrieving stored data from the DST execu-
tion units (i.e., the DSTN module). In this example, the DST
execution units output encoded data slices 100 corresponding
to the data retrieval requests. The de-grouping module 180
receives retrieved slices 100 and de-groups them to produce
encoded data slices per data partition 122. The DS error
decoding module 182 decodes, in accordance with DS error
encoding parameters, the encoded data slices per data parti-
tion 122 to produce data partitions 120.

The data de-partitioning module 184 combines the data
partitions 120 into the data 92. The control module 186 con-
trols the conversion of retrieved slices 100 into the data 92
using control signals 190 to each of the modules. For instance,
the control module 186 provides de-grouping information to
the de-grouping module 180, provides the DS error encoding
parameters to the DS error decoding module 182, and pro-
vides de-partitioning information to the data de-partitioning
module 184.

FIG. 14 is a logic diagram of an example of a method that
is executable by distributed storage and task (DST) client
module regarding inbound DST processing. The method
begins at step 194 where the DST client module receives
partial results. The method continues at step 196 where the
DST client module retrieves the task corresponding to the
partial results. For example, the partial results include header
information that identifies the requesting entity, which corre-
lates to the requested task.

The method continues at step 198 where the DST client
module determines result processing information based on
the task. For example, if the task were to identify a particular
word or phrase within the data, the result processing infor-
mation would indicate to aggregate the partial results for the
corresponding portions of the data to produce the final result.
As another example, if the task were to count the occurrences
of a particular word or phrase within the data, results of
processing the information would indicate to add the partial
results to produce the final results. The method continues at
step 200 where the DST client module processes the partial
results in accordance with the result processing information
to produce the final result or results.

FIG. 15 is a diagram of an example of de-grouping selec-
tion processing of an inbound distributed storage and task
(DST) processing section of a DST client module. In general,
this is an inverse process of the grouping module of the

US 9,292,212 B2

19

outbound DST processing section of FIG. 9. Accordingly, for
each data partition (e.g., partition #1), the de-grouping mod-
ule retrieves the corresponding slice grouping from the DST
execution units (EU) (e.g., DST 1-5).

As shown, DST execution unit #1 provides a first slice
grouping, which includes the first encoded slices of each of
the sets of encoded slices (e.g., encoded data slices of con-
tiguous data of data blocks 1-15); DST execution unit #2
provides a second slice grouping, which includes the second
encoded slices of each of the sets of encoded slices (e.g.,
encoded data slices of contiguous data of data blocks 16-30);
DST execution unit #3 provides a third slice grouping, which
includes the third encoded slices of each of the sets of
encoded slices (e.g., encoded data slices of contiguous data of
data blocks 31-45); DST execution unit #4 provides a fourth
slice grouping, which includes the fourth encoded slices of
each of the sets of encoded slices (e.g., first encoded data
slices of error coding (EC) data); and DST execution unit #5
provides a fifth slice grouping, which includes the fifth
encoded slices of each of the sets of encoded slices (e.g., first
encoded data slices of error coding (EC) data).

The de-grouping module de-groups the slice groupings
(e.g., received slices 100) using a de-grouping selector 180
controlled by a control signal 190 as shown in the example to
produce a plurality of sets of encoded data slices (e.g.,
retrieved slices for a partition into sets of slices 122). Each set
corresponding to a data segment of the data partition.

FIG. 16 is a schematic block diagram of an embodiment of
a dispersed storage (DS) error decoding module 182 of an
inbound distributed storage and task (DST) processing sec-
tion. The DS error decoding module 182 includes an inverse
per slice security processing module 202, a de-slicing module
204, an error decoding module 206, an inverse segment secu-
rity module 208, a de-segmenting processing module 210,
and a control module 186.

In an example of operation, the inverse per slice security
processing module 202, when enabled by the control module
186, unsecures each encoded data slice 122 based on slice
de-security information received as control information 190
(e.g., the compliment of the slice security information dis-
cussed with reference to FIG. 6) received from the control
module 186. The slice security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC verification, etc.), and/or any other type of
digital security. For example, when the inverse per slice secu-
rity processing module 202 is enabled, it verifies integrity
information (e.g., a CRC value) of each encoded data slice
122, it decrypts each verified encoded data slice, and decom-
presses each decrypted encoded data slice to produce slice
encoded data 158. When the inverse per slice security pro-
cessing module 202 is not enabled, it passes the encoded data
slices 122 as the sliced encoded data 158 or is bypassed such
that the retrieved encoded data slices 122 are provided as the
sliced encoded data 158.

The de-slicing module 204 de-slices the sliced encoded
data 158 into encoded data segments 156 in accordance with
a pillar width of the error correction encoding parameters
received as control information 190 from the control module
186. For example, if the pillar width is five, the de-slicing
module 204 de-slices a set of five encoded data slices into an
encoded data segment 156. The error decoding module 206
decodes the encoded data segments 156 in accordance with
error correction decoding parameters received as control
information 190 from the control module 186 to produce
secure data segments 154. The error correction decoding
parameters include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-

5

10

15

20

25

30

35

40

45

50

55

60

65

20
Solomon based algorithm, an information dispersal algo-
rithm, etc.), a pillar width, a decode threshold, a read thresh-
old, a write threshold, etc. For example, the error correction
decoding parameters identify a specific error correction
encoding scheme, specify a pillar width of five, and specify a
decode threshold of three.

The inverse segment security processing module 208,
when enabled by the control module 186, unsecures the
secured data segments 154 based on segment security infor-
mation received as control information 190 from the control
module 186. The segment security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC, etc.) verification, and/or any other type of
digital security. For example, when the inverse segment secu-
rity processing module 208 is enabled, it verifies integrity
information (e.g., a CRC value) of each secure data segment
154, it decrypts each verified secured data segment, and
decompresses each decrypted secure data segment to produce
a data segment 152. When the inverse segment security pro-
cessing module 208 is not enabled, it passes the decoded data
segment 154 as the data segment 152 or is bypassed.

The de-segment processing module 210 receives the data
segments 152 and receives de-segmenting information as
control information 190 from the control module 186. The
de-segmenting information indicates how the de-segment
processing module 210 is to de-segment the data segments
152 into a data partition 120. For example, the de-segmenting
information indicates how the rows and columns of data
segments are to be rearranged to yield the data partition 120.

FIG. 17 is a diagram of an example of de-slicing and error
decoding processing of a dispersed error decoding module. A
de-slicing module 204 receives at least a decode threshold
number of encoded data slices 158 for each data segment in
accordance with control information 190 and provides
encoded data 156. In this example, a decode threshold is
three. As such, each set of encoded data slices 158 is shown to
have three encoded data slices per data segment. The de-
slicing module 204 may receive three encoded data slices per
data segment because an associated distributed storage and
task (DST) client module requested retrieving only three
encoded data slices per segment or selected three of the
retrieved encoded data slices per data segment. As shown,
which is based on the unity matrix encoding previously dis-
cussed with reference to FIG. 8, an encoded data slice may be
a data-based encoded data slice (e.g., DS1_d1&d2) or an
error code based encoded data slice (e.g., ES3_1).

An error decoding module 206 decodes the encoded data
156 of each data segment in accordance with the error cor-
rection decoding parameters of control information 190 to
produce secured segments 154. In this example, data segment
1 includes 3 rows with each row being treated as one word for
encoding. As such, data segment 1 includes three words: word
1 including data blocks d1 and d2, word 2 including data
blocks d16 and d17, and word 3 including data blocks d31 and
d32. Each of data segments 2-7 includes three words where
each word includes two data blocks. Data segment 8 includes
three words where each word includes a single data block
(e.g., d15, d30, and d45).

FIG. 18 is a diagram of an example of a de-segment pro-
cessing of an inbound distributed storage and task (DST)
processing. In this example, a de-segment processing module
210 receives data segments 152 (e.g., 1-8) and rearranges the
data blocks of the data segments into rows and columns in
accordance with de-segmenting information of control infor-
mation 190 to produce a data partition 120. Note that the
number of rows is based on the decode threshold (e.g., 3 in

US 9,292,212 B2

21

this specific example) and the number of columns is based on
the number and size of the data blocks.

The de-segmenting module 210 converts the rows and col-
umns of data blocks into the data partition 120. Note that each
data block may be of the same size as other data blocks or of
a different size. In addition, the size of each data block may be
a few bytes to megabytes of data.

FIG. 19 is a diagram of an example of converting slice
groups into data 92 within an inbound distributed storage and
task (DST) processing section. As shown, the data 92 is
reconstructed from a plurality of data partitions (1-x, where x
is an integer greater than 4). Each data partition (or chunk set
of data) is decoded and re-grouped using a de-grouping and
decoding function 212 and a de-partition function 214 from
slice groupings as previously discussed. For a given data
partition, the slice groupings (e.g., at least a decode threshold
per data segment of encoded data slices) are received from
DST execution units. From data partition to data partition, the
ordering of the slice groupings received from the DST execu-
tion units may vary as discussed with reference to FIG. 10.

FIG. 20 is a diagram of an example of a distributed storage
and/or retrieval within the distributed computing system. The
distributed computing system includes a plurality of distrib-
uted storage and/or task (DST) processing client modules 34
(one shown) coupled to a distributed storage and/or task pro-
cessing network (DSTN) module, or multiple DSTN mod-
ules, via a network 24. The DST client module 34 includes an
outbound DST processing section 80 and an inbound DST
processing section 82. The DSTN module includes a plurality
of DST execution units. Each DST execution unit includes a
controller 86, memory 88, one or more distributed task (DT)
execution modules 90, and a DST client module 34.

In an example of data storage, the DST client module 34
has data 92 that it desires to store in the DSTN module. The
data 92 may be a file (e.g., video, audio, text, graphics, etc.),
a data object, a data block, an update to a file, an update to a
data block, etc. In this instance, the outbound DST processing
module 80 converts the data 92 into encoded data slices 216 as
will be further described with reference to FIGS. 21-23. The
outbound DST processing module 80 sends, via the network
24, to the DST execution units for storage as further described
with reference to FIG. 24.

In an example of data retrieval, the DST client module 34
issues a retrieve request to the DST execution units for the
desired data 92. The retrieve request may address each DST
executions units storing encoded data slices of the desired
data, address a decode threshold number of DST execution
units, address a read threshold number of DST execution
units, or address some other number of DST execution units.
Inresponse to the request, each addressed DST execution unit
retrieves its encoded data slices 100 of the desired data and
sends them to the inbound DST processing section 82, via the
network 24.

When, for each data segment, the inbound DST processing
section 82 receives at least a decode threshold number of
encoded data slices 100, it converts the encoded data slices
100 into a data segment. The inbound DST processing section
82 aggregates the data segments to produce the retrieved data
92.

FIG. 21 is a schematic block diagram of an embodiment of
an outbound distributed storage and/or task (DST) processing
section 80 of a DST client module coupled to a distributed
storage and task network (DSTN) module (e.g., a plurality of
DST execution units) via a network 24. The outbound DST
processing section 80 includes a data partitioning module
110, a dispersed storage (DS) error encoding module 112, a

25

40

45

55

60

22

grouping selector module 114, a control module 116, and a
distributed task control module 118.

In an example of operation, the data partitioning module
110 is by-passed such that data 92 is provided directly to the
DS error encoding module 112. The control module 116
coordinates the by-passing of the data partitioning module
110 by outputting a bypass 220 message to the data partition-
ing module 110.

The DS error encoding module 112 receives the data 92 in
a serial manner, a parallel manner, and/or a combination
thereof. The DS error encoding module 112 DS error encodes
the data in accordance with control information 160 from the
control module 116 to produce encoded data slices 218. The
DS error encoding includes segmenting the data 92 into data
segments, segment security processing (e.g., encryption,
compression, watermarking, integrity check (e.g., CRC,
etc.)), error encoding, slicing, and/or per slice security pro-
cessing (e.g., encryption, compression, watermarking, integ-
rity check (e.g., CRC, etc.)). The control information 160
indicates which steps of the DS error encoding are active for
the data 92 and, for active steps, indicates the parameters for
the step. For example, the control information 160 indicates
that the error encoding is active and includes error encoding
parameters (e.g., pillar width, decode threshold, write thresh-
old, read threshold, type of error encoding, etc.).

The grouping selector module 114 groups the encoded
slices 218 of the data segments into pillars of slices 216. The
number of pillars corresponds to the pillar width of the DS
error encoding parameters. In this example, the distributed
task control module 118 facilitates the storage request.

FIG. 22 is a schematic block diagram of an example of a
dispersed storage (DS) error encoding module 112 for the
example of FIG. 21. The DS error encoding module 112
includes a segment processing module 142, a segment secu-
rity processing module 144, an error encoding module 146, a
slicing module 148, and a per slice security processing mod-
ule 150. Each of these modules is coupled to a control module
116 to receive control information 160 therefrom.

In an example of operation, the segment processing mod-
ule 142 receives data 92 and receives segmenting information
as control information 160 from the control module 116. The
segmenting information indicates how the segment process-
ing module is to segment the data. For example, the segment-
ing information indicates the size of each data segment. The
segment processing module 142 segments the data 92 into
data segments 152 in accordance with the segmenting infor-
mation.

The segment security processing module 144, when
enabled by the control module 116, secures the data segments
152 based on segment security information received as con-
trol information 160 from the control module 116. The seg-
ment security information includes data compression,
encryption, watermarking, integrity check (e.g., CRC, etc.),
and/or any other type of digital security. For example, when
the segment security processing module 144 is enabled, it
compresses a data segment 152, encrypts the compressed data
segment, and generates a CRC value for the encrypted data
segment to produce a secure data segment. When the segment
security processing module 144 is not enabled, it passes the
data segments 152 to the error encoding module 146 or is
bypassed such that the data segments 152 are provided to the
error encoding module 146.

The error encoding module 146 encodes the secure data
segments in accordance with error correction encoding
parameters received as control information 160 from the con-
trol module 116. The error correction encoding parameters
include identifying an error correction encoding scheme

US 9,292,212 B2

23

(e.g., forward error correction algorithm, a Reed-Solomon
based algorithm, an information dispersal algorithm, etc.), a
pillar width, a decode threshold, a read threshold, a write
threshold, etc. For example, the error correction encoding
parameters identify a specific error correction encoding
scheme, specifies a pillar width of five, and specifies a decode
threshold of three. From these parameters, the error encoding
module 146 encodes a data segment to produce an encoded
data segment.

The slicing module 148 slices the encoded data segment in
accordance with a pillar width of the error correction encod-
ing parameters. For example, if the pillar width is five, the
slicing module slices an encoded data segment into a set of
five encoded data slices. As such, for a plurality of data
segments, the slicing module 148 outputs a plurality of sets of
encoded data slices as shown within encoding and slicing
function 222 as described.

The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice based on slice security information received as
control information 160 from the control module 116. The
slice security information includes data compression, encryp-
tion, watermarking, integrity check (e.g., CRC, etc.), and/or
any other type of digital security. For example, when the per
slice security processing module 150 is enabled, it may com-
press an encoded data slice, encrypt the compressed encoded
data slice, and generate a CRC value for the encrypted
encoded data slice to produce a secure encoded data slice
tweaking. When the per slice security processing module 150
is not enabled, it passes the encoded data slices or is bypassed
such that the encoded data slices 218 are the output of the DS
error encoding module 112.

FIG. 23 is a diagram of an example of converting data 92
into pillar slice groups utilizing encoding, slicing and pillar
grouping function 224 for storage in memory of a distributed
storage and task network (DSTN) module. As previously
discussed the data 92 is encoded and sliced into a plurality of
sets of encoded data slices; one set per data segment. The
grouping selector module organizes the sets of encoded data
slices into pillars of data slices. In this example, the DS error
encoding parameters include a pillar width of 5 and a decode
threshold of 3. As such, for each data segment, 5 encoded data
slices are created.

The grouping selector module takes the first encoded data
slice of each of the sets and forms a first pillar, which may be
sent to the first DST execution unit. Similarly, the grouping
selector module creates the second pillar from the second
slices of the sets; the third pillar from the third slices of the
sets; the fourth pillar from the fourth slices of the sets; and the
fifth pillar from the fifth slices of the set.

FIG. 24 is a schematic block diagram of an embodiment of
a distributed storage and/or task (DST) execution unit that
includes an interface 169, a controller 86, memory 88, one or
more distributed task (DT) execution modules 90, and a DST
client module 34. A computing core 26 may be utilized to
implement the one or more DT execution modules 90 and the
DST client module 34. The memory 88 is of sufficient size to
store a significant number of encoded data slices (e.g., thou-
sands of slices to hundreds-of-millions of slices) and may
include one or more hard drives and/or one or more solid-state
memory devices (e.g., flash memory, DRAM, etc.).

In an example of storing a pillar of slices 216, the DST
executionunit receives, via interface 169, a pillar of slices 216
(e.g., pillar #1 slices). The memory 88 stores the encoded data
slices 216 of the pillar of slices in accordance with memory
control information 174 it receives from the controller 86.
The controller 86 (e.g., a processing module, a CPU, etc.)

20

25

40

45

50

24

generates the memory control information 174 based on dis-
tributed storage information (e.g., user information (e.g., user
1D, distributed storage permissions, data access permission,
etc.), vaultinformation (e.g., virtual memory assigned to user,
user group, etc.), etc.). Similarly, when retrieving slices, the
DST execution unit receives, via interface 169, a slice
retrieval request. The memory 88 retrieves the slice in accor-
dance with memory control information 174 it receives from
the controller 86. The memory 88 outputs the slice 100, via
the interface 169, to a requesting entity.

FIG. 25 is a schematic block diagram of an example of
operation of an inbound distributed storage and/or task (DST)
processing section 82 for retrieving dispersed error encoded
data 92. The inbound DST processing section 82 includes a
de-grouping module 180, a dispersed storage (DS) error
decoding module 182, a data de-partitioning module 184, a
control module 186, and a distributed task control module
188. Note that the control module 186 and/or the distributed
task control module 188 may be separate modules from cor-
responding ones of an outbound DST processing section or
may be the same modules.

In an example of operation, the inbound DST processing
section 82 is retrieving stored data 92 from the DST execution
units (i.e., the DSTN module). In this example, the DST
execution units output encoded data slices corresponding to
data retrieval requests from the distributed task control mod-
ule 188. The de-grouping module 180 receives pillars of
slices 100 and de-groups them in accordance with control
information 190 from the control module 186 to produce sets
of encoded data slices 218. The DS error decoding module
182 decodes, in accordance with the DS error encoding
parameters received as control information 190 from the con-
trol module 186, each set of encoded data slices 218 to pro-
duce data segments, which are aggregated into retrieved data
92. The data de-partitioning module 184 is by-passed in this
operational mode via a bypass signal 226 of control informa-
tion 190 from the control module 186.

FIG. 26 is a schematic block diagram of an embodiment of
a dispersed storage (DS) error decoding module 182 of an
inbound distributed storage and task (DST) processing sec-
tion. The DS error decoding module 182 includes an inverse
per slice security processing module 202, a de-slicing module
204, an error decoding module 206, an inverse segment secu-
rity module 208, and a de-segmenting processing module
210. The dispersed error decoding module 182 is operable to
de-slice and decode encoded slices per data segment 218
utilizing a de-slicing and decoding function 228 to produce a
plurality of data segments that are de-segmented utilizing a
de-segment function 230 to recover data 92.

In an example of operation, the inverse per slice security
processing module 202, when enabled by the control module
186 via control information 190, unsecures each encoded data
slice 218 based on slice de-security information (e.g., the
compliment of the slice security information discussed with
reference to FIG. 6) received as control information 190 from
the control module 186. The slice de-security information
includes data decompression, decryption, de-watermarking,
integrity check (e.g., CRC verification, etc.), and/or any other
type of digital security. For example, when the inverse per
slice security processing module 202 is enabled, it verifies
integrity information (e.g., a CRC value) of each encoded
data slice 218, it decrypts each verified encoded data slice,
and decompresses each decrypted encoded data slice to pro-
duce slice encoded data. When the inverse per slice security
processing module 202 is not enabled, it passes the encoded

US 9,292,212 B2

25

data slices 218 as the sliced encoded data or is bypassed such
that the retrieved encoded data slices 218 are provided as the
sliced encoded data.

The de-slicing module 204 de-slices the sliced encoded
data into encoded data segments in accordance with a pillar
width of the error correction encoding parameters received as
control information 190 from a control module 186. For
example, if the pillar width is five, the de-slicing module
de-slices a set of five encoded data slices into an encoded data
segment. Alternatively, the encoded data segment may
include just three encoded data slices (e.g., when the decode
threshold is 3).

The error decoding module 206 decodes the encoded data
segments in accordance with error correction decoding
parameters received as control information 190 from the con-
trol module 186 to produce secure data segments. The error
correction decoding parameters include identifying an error
correction encoding scheme (e.g., forward error correction
algorithm, a Reed-Salomon based algorithm, an information
dispersal algorithm, etc.), a pillar width, a decode threshold,
a read threshold, a write threshold, etc. For example, the error
correction decoding parameters identify a specific error cor-
rection encoding scheme, specify a pillar width of five, and
specify a decode threshold of three.

The inverse segment security processing module 208,
when enabled by the control module 186, unsecures the
secured data segments based on segment security information
received as control information 190 from the control module
186. The segment security information includes data decom-
pression, decryption, de-watermarking, integrity check (e.g.,
CRC, etc.) verification, and/or any other type of digital secu-
rity. For example, when the inverse segment security process-
ing module is enabled, it verifies integrity information (e.g., a
CRC value) of each secure data segment, it decrypts each
verified secured data segment, and decompresses each
decrypted secure data segment to produce a data segment
152. When the inverse segment security processing module
208 is not enabled, it passes the decoded data segment 152 as
the data segment or is bypassed. The de-segmenting process-
ing module 210 aggregates the data segments 152 into the
data 92 in accordance with control information 190 from the
control module 186.

FIG. 27 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module that includes a plurality of distributed storage and
task (DST) execution units (#1 through #n, where, for
example, n is an integer greater than or equal to three). Each
of the DST execution units includes a DST client module 34,
a controller 86, one or more DT (distributed task) execution
modules 90, and memory 88.

Inthis example, the DSTN module stores, in the memory of
the DST execution units, a plurality of DS (dispersed storage)
encoded data (e.g., 1 through n, where n is an integer greater
than or equal to two) and stores a plurality of DS encoded task
codes (e.g., 1 through k, where k is an integer greater than or
equal to two). The DS encoded data may be encoded in
accordance with one or more examples described with refer-
ence to FIGS. 3-19 (e.g., organized in slice groupings) or
encoded in accordance with one or more examples described
with reference to FIGS. 20-26 (e.g., organized in pillar
groups). The data that is encoded into the DS encoded data
may be of any size and/or of any content. For example, the
data may be one or more digital books, a copy of a company’s
emails, a large-scale Internet search, a video security file, one
or more entertainment video files (e.g., television programs,
movies, etc.), data files, and/or any other large amount of data
(e.g., greater than a few Terra-Bytes).

10

15

20

25

30

35

40

45

50

55

60

65

26

The tasks that are encoded into the DS encoded task code
may be a simple function (e.g., a mathematical function, a
logic function, an identify function, a find function, a search
engine function, a replace function, etc.), a complex function
(e.g., compression, human and/or computer language trans-
lation, text-to-voice conversion, voice-to-text conversion,
etc.), multiple simple and/or complex functions, one or more
algorithms, one or more applications, etc. The tasks may be
encoded into the DS encoded task code in accordance with
one or more examples described with reference to FIGS. 3-19
(e.g., organized in slice groupings) or encoded in accordance
with one or more examples described with reference to FIGS.
20-26 (e.g., organized in pillar groups).

In an example of operation, a DST client module of a user
device orof'a DST processing unit issues a DST request to the
DSTN module. The DST request may include a request to
retrieve stored data, or a portion thereof, may include a
request to store data that is included with the DST request,
may include a request to perform one or more tasks on stored
data, may include a request to perform one or more tasks on
data included with the DST request, etc. In the cases where
the DST request includes a request to store data or to retrieve
data, the client module and/or the DSTN module processes
the request as previously discussed with reference to one or
more of FIGS. 3-19 (e.g., slice groupings) and/or 20-26 (e.g.,
pillar groupings). In the case where the DST request includes
a request to perform one or more tasks on data included with
the DST request, the DST client module and/or the DSTN
module process the DST request as previously discussed with
reference to one or more of FIGS. 3-19.

In the case where the DST request includes a request to
perform one or more tasks on stored data, the DST client
module and/or the DSTN module processes the DST request
as will be described with reference to one or more of FIGS.
28-39. In general, the DST client module identifies data and
one or more tasks for the DSTN module to execute upon the
identified data. The DST request may be for a one-time execu-
tion of the task or for an on-going execution of the task. As an
example of the latter, as a company generates daily emails, the
DST request may be to daily search new emails for inappro-
priate content and, if found, record the content, the email
sender(s), the email recipient(s), email routing information,
notify human resources of the identified email, etc.

FIG. 28 is a schematic block diagram of an example of a
distributed computing system performing tasks on stored
data. In this example, two distributed storage and task (DST)
client modules 1-2 are shown: the first may be associated with
a user device and the second may be associated with a DST
processing unit or a high priority user device (e.g., high pri-
ority clearance user, system administrator, etc.). Each DST
client module includes a list of stored data 234 and a list of
tasks codes 236. The list of stored data 234 includes one or
more entries of data identifying information, where each
entry identifies data stored in the DSTN module 22. The data
identifying information (e.g., data ID) includes one or more
of'adatafile name, a data file directory listing, DSTN address-
ing information of the data, a data object identifier, etc. The
list of tasks 236 includes one or more entries of task code
identifying information, when each entry identifies task
codes stored in the DSTN module 22. The task code identi-
fying information (e.g., task ID) includes one or more of a
task file name, a task file directory listing, DSTN addressing
information of the task, another type of identifier to identify
the task, etc.

As shown, the list of data 234 and the list of tasks 236 are
each smaller in number of entries for the first DST client
module than the corresponding lists of the second DST client

US 9,292,212 B2

27

module. This may occur because the user device associated
with the first DST client module has fewer privileges in the
distributed computing system than the device associated with
the second DST client module. Alternatively, this may occur
because the user device associated with the first DST client
module serves fewer users than the device associated with the
second DST client module and is restricted by the distributed
computing system accordingly. As yet another alternative,
this may occur through no restraints by the distributed com-
puting system, it just occurred because the operator of the
user device associated with the first DST client module has
selected fewer data and/or fewer tasks than the operator of the
device associated with the second DST client module.

In an example of operation, the first DST client module
selects one or more data entries 238 and one or more tasks 240
from its respective lists (e.g., selected data ID and selected
task ID). The first DST client module sends its selections to a
task distribution module 232. The task distribution module
232 may be within a stand-alone device of the distributed
computing system, may be within the user device that con-
tains the first DST client module, or may be within the DSTN
module 22.

Regardless of the task distribution module’s location, it
generates DST allocation information 242 from the selected
task ID 240 and the selected data ID 238. The DST allocation
information 242 includes data partitioning information, task
execution information, and/or intermediate result informa-
tion. The task distribution module 232 sends the DST alloca-
tion information 242 to the DSTN module 22. Note that one
or more examples of the DST allocation information will be
discussed with reference to one or more of FIGS. 29-39.

The DSTN module 22 interprets the DST allocation infor-
mation 242 to identify the stored DS encoded data (e.g., DS
error encoded data 2) and to identify the stored DS error
encoded task code (e.g., DS error encoded task code 1). In
addition, the DSTN module 22 interprets the DST allocation
information 242 to determine how the data is to be partitioned
and how the task is to be partitioned. The DSTN module 22
also determines whether the selected DS error encoded data
238 needs to be converted from pillar grouping to slice group-
ing. If so, the DSTN module 22 converts the selected DS error
encoded data into slice groupings and stores the slice group-
ing DS error encoded data by overwriting the pillar grouping
DS error encoded data or by storing it in a different location in
the memory of the DSTN module 22 (i.e., does not overwrite
the pillar grouping DS encoded data).

The DSTN module 22 partitions the data and the task as
indicated in the DST allocation information 242 and sends the
portions to selected DST execution units of the DSTN module
22. Each of the selected DST execution units performs its
partial task(s) on its slice groupings to produce partial results.
The DSTN module 22 collects the partial results from the
selected DST execution units and provides them, as result
information 244, to the task distribution module. The result
information 244 may be the collected partial results, one or
more final results as produced by the DSTN module 22 from
processing the partial results in accordance with the DST
allocation information 242, or one or more intermediate
results as produced by the DSTN module 22 from processing
the partial results in accordance with the DST allocation
information 242.

The task distribution module 232 receives the result infor-
mation 244 and provides one or more final results 104 there-
from to the first DST client module. The final result(s) 104
may be result information 244 or a result(s) of the task dis-
tribution module’s processing of the result information 244.

10

15

20

25

30

35

40

45

50

55

60

65

28

In concurrence with processing the selected task of the first
DST client module, the distributed computing system may
process the selected task(s) of the second DST client module
on the selected data(s) of the second DST client module.
Alternatively, the distributed computing system may process
the second DST client module’s request subsequent to, or
preceding, that of the first DST client module. Regardless of
the ordering and/or parallel processing of the DST client
module requests, the second DST client module provides its
selected data 238 and selected task 240 to a task distribution
module 232. If the task distribution module 232 is a separate
device of the distributed computing system or within the
DSTN module, the task distribution modules 232 coupled to
the first and second DST client modules may be the same
module. The task distribution module 232 processes the
request of the second DST client module in a similar manner
as it processed the request of the first DST client module.

FIG. 29 is a schematic block diagram of an embodiment of
a task distribution module 232 facilitating the example of
FIG. 28. The task distribution module 232 includes a plurality
of'tables it uses to generate distributed storage and task (DST)
allocation information 242 for selected data and selected
tasks received from a DST client module. The tables include
data storage information 248, task storage information 250,
distributed task (DT) execution module information 252, and
task < sub-task mapping information 246.

The data storage information table 248 includes a data
identification (ID) field 260, a data size field 262, an address-
ing information field 264, distributed storage (DS) informa-
tion 266, and may further include other information regarding
the data, how it is stored, and/or how it can be processed. For
example, DS encoded data #1 has a data ID of 1, a data size of
AA (e.g., abyte size of a few terra-bytes or more), addressing
information of Addr_1_AA, and DS parameters of 3/5;
SEG_1;and SLC_1. In this example, the addressing informa-
tion may be a virtual address corresponding to the virtual
address of the first storage word (e.g., one or more bytes) of
the data and information on how to calculate the other
addresses, may be a range of virtual addresses for the storage
words of the data, physical addresses of the first storage word
or the storage words of the data, may be a list of slices names
of'the encoded data slices of the data, etc. The DS parameters
may include identity of an error encoding scheme, decode
threshold/pillar width (e.g., 3/5 for the first data entry), seg-
ment security information (e.g., SEG_1), per slice security
information (e.g., SLC_1), and/or any other information
regarding how the data was encoded into data slices.

The task storage information table 250 includes a task
identification (ID) field 268, a task size field 270, an address-
ing information field 272, distributed storage (DS) informa-
tion 274, and may further include other information regarding
the task, how it is stored, and/or how it can be used to process
data. For example, DS encoded task #2 has atask ID of 2, a
task size of XY, addressing information of Addr_2_XY, and
DS parameters of 3/5; SEG_2; and SLC_2. In this example,
the addressing information may be a virtual address corre-
sponding to the virtual address of the first storage word (e.g.,
one or more bytes) of the task and information on how to
calculate the other addresses, may be a range of virtual
addresses for the storage words of the task, physical addresses
of'the first storage word or the storage words of the task, may
be a list of slices names of the encoded slices of the task code,
etc. The DS parameters may include identity of an error
encoding scheme, decode threshold/pillar width (e.g., 3/5 for
the first data entry), segment security information (e.g.,
SEG_2), per slice security information (e.g., SLC_2), and/or
any other information regarding how the task was encoded

US 9,292,212 B2

29

into encoded task slices. Note that the segment and/or the
per-slice security information include a type of encryption (if
enabled), a type of compression (if enabled), watermarking
information (if enabled), and/or an integrity check scheme (if
enabled).

The task <« sub-task mapping information table 246
includes a task field 256 and a sub-task field 258. The task
field 256 identifies a task stored in the memory of a distributed
storage and task network (DSTN) module and the corre-
sponding sub-task fields 258 indicates whether the task
includes sub-tasks and, if so, how many and if any of the
sub-tasks are ordered. In this example, the task < sub-task
mapping information table 246 includes an entry for each task
stored in memory of the DSTN module (e.g., task 1 through
task k). In particular, this example indicates that task 1
includes 7 sub-tasks; task 2 does not include sub-tasks, and
task k includes r number of sub-tasks (where r is an integer
greater than or equal to two).

The DT execution module table 252 includes a DST execu-
tion unit ID field 276, a DT execution module ID field 278,
and a DT execution module capabilities field 280. The DST
execution unit ID field 276 includes the identity of DST units
in the DSTN module. The DT execution module ID field 278
includes the identity of each DT execution unit in each DST
unit. For example, DST unit 1 includes three DT executions
modules (e.g., 1_1, 1_2, and 1_3). The DT execution capa-
bilities field 280 includes identity of the capabilities of the
corresponding DT execution unit. For example, DT execution
module 1_1 includes capabilities X, where X includes one or
more of MIPS capabilities, processing resources (e.g., quan-
tity and capability of microprocessors, CPUs, digital signal
processors, co-processor, microcontrollers, arithmetic logic
circuitry, and/or any other analog and/or digital processing
circuitry), availability of the processing resources, memory
information (e.g., type, size, availability, etc.), and/or any
information germane to executing one or more tasks.

From these tables, the task distribution module 232 gener-
ates the DST allocation information 242 to indicate where the
data is stored, how to partition the data, where the task is
stored, how to partition the task, which DT execution units
should perform which partial task on which data partitions,
where and how intermediate results are to be stored, etc. If
multiple tasks are being performed on the same data or dif-
ferent data, the task distribution module factors such infor-
mation into its generation of the DST allocation information.

FIG. 30 is a diagram of a specific example of a distributed
computing system performing tasks on stored data as a task
flow 318. In this example, selected data 92 is data 2 and
selected tasks are tasks 1, 2, and 3. Task 1 corresponds to
analyzing translation of data from one language to another
(e.g., human language or computer language); task 2 corre-
sponds to finding specific words and/or phrases in the data;
and task 3 corresponds to finding specific translated words
and/or phrases in translated data.

In this example, task 1 includes 7 sub-tasks: task 1_1—
identify non-words (non-ordered); task 1_2—identify unique
words (non-ordered); task 1_3—translate (non-ordered); task
1_4—translate back (ordered after task 1_3); task 1_5—com-
pare to ID errors (ordered after task 1-4); task 1_6—deter-
mine non-word translation errors (ordered after task 1_5 and
1_1); and task 1_7—determine correct translations (ordered
after 1_5 and 1_2). The sub-task further indicates whether
they are an ordered task (i.e., are dependent on the outcome of
another task) or non-order (i.e., are independent of the out-
come of another task). Task 2 does not include sub-tasks and
task 3 includes two sub-tasks: task 3_1 translate; and task 3_2
find specific word or phrase in translated data.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

In general, the three tasks collectively are selected to ana-
lyze data for translation accuracies, translation errors, trans-
lation anomalies, occurrence of specific words or phrases in
the data, and occurrence of specific words or phrases on the
translated data. Graphically, the data 92 is translated 306 into
translated data 282; is analyzed for specific words and/or
phrases 300 to produce a list of specific words and/or phrases
286; is analyzed for non-words 302 (e.g., not in a reference
dictionary) to produce a list of non-words 290; and is ana-
lyzed for unique words 316 included in the data 92 (i.e., how
many different words are included in the data) to produce a
list of unique words 298. Each of these tasks is independent of
each other and can therefore be processed in parallel if
desired.

The translated data 282 is analyzed (e.g., sub-task 3_2) for
specific translated words and/or phrases 304 to produce a list
of specific translated words and/or phrases 288. The trans-
lated data 282 is translated back 308 (e.g., sub-task 1_4) into
the language of the original data to produce re-translated data
284. These two tasks are dependent on the translate task (e.g.,
task 1_3) and thus must be ordered after the translation task,
which may be in a pipelined ordering or a serial ordering. The
re-translated data 284 is then compared 310 with the original
data 92 to find words and/or phrases that did not translate (one
way and/or the other) properly to produce a list of incorrectly
translated words 294. As such, the comparing task (e.g., sub-
task 1_5) 310 is ordered after the translation 306 and re-
translation tasks 308 (e.g., sub-tasks 1_3 and 1_4).

The list of words incorrectly translated 294 is compared
312 to the list of non-words 290 to identify words that were
not properly translated because the words are non-words to
produce a list of errors due to non-words 292. In addition, the
list of words incorrectly translated 294 is compared 314 to the
list of unique words 298 to identify unique words that were
properly translated to produce a list of correctly translated
words 296. The comparison may also identity unique words
that were not properly translated to produce a list of unique
words that were not properly translated. Note that each list of
words (e.g., specific words and/or phrases, non-words,
unique words, translated words and/or phrases, etc.,) may
include the word and/or phrase, how many times it is used,
where in the data it is used, and/or any other information
requested regarding a word and/or phrase.

FIG. 31 is a schematic block diagram of an example of a
distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FIG.
30. As shown, DS encoded data 2 is stored as encoded data
slices across the memory (e.g., stored in memories 88) of
DST execution units 1-5; the DS encoded task code 1 (of task
1) and DS encoded task 3 are stored as encoded task slices
across the memory of DST execution units 1-5; and DS
encoded task code 2 (oftask 2) is stored as encoded task slices
across the memory of DST execution units 3-7. As indicated
in the data storage information table and the task storage
information table of FIG. 29, the respective data/task has DS
parameters of 3/5 for their decode threshold/pillar width;
hence spanning the memory of five DST execution units.

FIG. 32 is a diagram of an example of distributed storage
and task (DST) allocation information 242 for the example of
FIG. 30. The DST allocation information 242 includes data
partitioning information 320, task execution information 322,
and intermediate result information 324. The data partition-
ing information 320 includes the data identifier (ID), the
number of partitions to split the data into, address information
for each data partition, and whether the DS encoded data has
to be transformed from pillar grouping to slice grouping. The
task execution information 322 includes tabular information

US 9,292,212 B2

31

having a task identification field 326, a task ordering field
328, a data partition field ID 330, and a set of DT execution
modules 332 to use for the distributed task processing per data
partition. The intermediate result information 324 includes
tabular information having a name ID field 334, an ID of the
DST execution unit assigned to process the corresponding
intermediate result 336, a scratch pad storage field 338, and an
intermediate result storage field 340.

Continuing with the example of FIG. 30, where tasks 1-3
are to be distributedly performed on data 2, the data partition-
ing information includes the ID of data 2. In addition, the task
distribution module determines whether the DS encoded data
2 is in the proper format for distributed computing (e.g., was
stored as slice groupings). If not, the task distribution module
indicates that the DS encoded data 2 format needs to be
changed from the pillar grouping format to the slice grouping
format, which will be done by the DSTN module. In addition,
the task distribution module determines the number of parti-
tions to divide the data into (e.g., 2_1 through 2_z) and
addressing information for each partition.

The task distribution module generates an entry in the task
execution information section for each sub-task to be per-
formed. For example, task 1_1 (e.g., identify non-words on
the data) has no task ordering (i.e., is independent of the
results of other sub-tasks), is to be performed on data parti-
tions 2_1 through 2_z by DT execution modules 1_1, 2_1,
3_1,4_1,and 5_1. For instance, DT execution modules 1_1,
2_1,3_1,4_1,and 5_1 search for non-words in data partitions
2_1 through 2_z to produce task 1_1 intermediate results
(R1-1, which is a list of non-words). Task 1_2 (e.g., identity
unique words) has similar task execution information as task
1_1to produce task 1_2 intermediate results (R1-2, which is
the list of unique words).

Task 1_3 (e.g., translate) includes task execution informa-
tion as being non-ordered (i.e., is independent), having DT
executionmodules 1_1,2_1,3_1,4_1, and 5_1 translate data
partitions 2_1 through 2_4 and having DT execution modules
1.2,2 2,3 2,4 2, and 5_2 translate data partitions 2_5
through 2_z to produce task 1_3 intermediate results (R1-3,
which is the translated data). In this example, the data parti-
tions are grouped, where different sets of DT execution mod-
ules perform a distributed sub-task (or task) on each data
partition group, which allows for further parallel processing.

Task 1_4 (e.g., translate back) is ordered after task 1_3 and
is to be executed on task 1_3’s intermediate result (e.g.,
R1-3_1) (e.g., the translated data). DT execution modules
1.1,2.1,3_1,4_1, and 5_1 are allocated to translate back
task 1_3 intermediate result partitions R1-3_1 through
R1-3_4 and DT execution modules 1_2,2 2, 6_1,7_1, and
7_2 are allocated to translate back task 1_3 intermediate
result partitions R1-3_5 through R1-3_z to produce task 1-4
intermediate results (R1-4, which is the translated back data).

Task 1_5 (e.g., compare data and translated data to identify
translation errors) is ordered after task 1_4 and is to be
executed on task 1_4’s intermediate results (R4-1) and on the
data. DT executionmodules 1_1,2_1,3_1,4 1,and 5_1 are
allocated to compare the data partitions (2_1 through 2_z)
with partitions of task 1-4 intermediate results partitions
R1-4_1 through R1-4_z to produce task 1_5 intermediate
results (R1-5, which is the list words translated incorrectly).

Task 1_6 (e.g., determine non-word translation errors) is
ordered after tasks 1_1 and 1_5 and is to be executed on tasks
1_1’s and 1_5’s intermediate results (R1-1 and R1-5). DT
executionmodules 1_1,2_1,3_1,4_1, and 5_1 are allocated
to compare the partitions of task 1_1 intermediate results
(R1-1_1 through R1-1_z) with partitions of task 1-5 interme-

10

15

20

25

30

35

40

45

50

55

60

65

32

diate results partitions (R1-5_1 through R1-5_z) to produce
task 1_6 intermediate results (R1-6, which is the list transla-
tion errors due to non-words).

Task 1_7 (e.g., determine words correctly translated) is
ordered after tasks 1_2 and 1_5 and is to be executed on tasks
1_2’s and 1_5’s intermediate results (R1-1 and R1-5). DT
executionmodules 1_2,2_2,3_2,4_2, and 5_2 are allocated
to compare the partitions of task 1_2 intermediate results
(R1-2_1 through R1-2_z) with partitions of task 1-5 interme-
diate results partitions (R1-5_1 through R1-5_z) to produce
task 1_7 intermediate results (R1-7, which is the list of cor-
rectly translated words).

Task 2 (e.g., find specific words and/or phrases) has no task
ordering (i.e., is independent of the results of other sub-tasks),
is to be performed on data partitions 2_1 through 2_z by DT
executionmodules3_1,4_1,5_1,6_1,and7_1. For instance,
DT executionmodules3_1,4_1,5_1,6_1,and 7_1 search for
specific words and/or phrases in data partitions 2_1 through
2_z to produce task 2 intermediate results (R2, which is a list
of specific words and/or phrases).

Task 3_2 (e.g., find specific translated words and/or
phrases) is ordered after task 1_3 (e.g., translate) is to be
performed on partitions R1-3_1 through R1-3_z by DT
executionmodules 1_2,2_ 2,3 2,4 _2,and5_2. For instance,
DT executionmodules 1_2,2_2,3_2,4_2,and 5_2 search for
specific translated words and/or phrases in the partitions of
the translated data (R1-3_1 through R1-3_z) to produce task
3_2 intermediate results (R3-2, which is a list of specific
translated words and/or phrases).

For each task, the intermediate result information indicates
which DST unit is responsible for overseeing execution of the
task and, if needed, processing the partial results generated by
the set of allocated DT execution units. In addition, the inter-
mediate result information indicates a scratch pad memory
for the task and where the corresponding intermediate results
are to be stored. For example, for intermediate result R1-1
(the intermediate result of task 1_1), DST unit 1 is responsible
for overseeing execution of the task 1_1 and coordinates
storage of the intermediate result as encoded intermediate
result slices stored in memory of DST execution units 1-5. In
general, the scratch pad is for storing non-DS encoded inter-
mediate results and the intermediate result storage is for stor-
ing DS encoded intermediate results.

FIGS. 33-38 are schematic block diagrams of the distrib-
uted storage and task network (DSTN) module performing
the example of FIG. 30. In FIG. 33, the DSTN module
accesses the data 92 and partitions it into a plurality of parti-
tions 1-z in accordance with distributed storage and task
network (DST) allocation information. For each data parti-
tion, the DSTN identifies a set of its DT (distributed task)
execution modules 90 to perform the task (e.g., identify non-
words (i.e., not in a reference dictionary) within the data
partition) in accordance with the DST allocation information.
From data partition to data partition, the set of DT execution
modules 90 may be the same, different, or a combination
thereof (e.g., some data partitions use the same set while other
data partitions use different sets).

For the first data partition, the first set of DT execution
modules (e.g., 1_1, 2_1, 3_1, 4_1, and 5_1 per the DST
allocation information of FIG. 32) executes task 1_1 to pro-
duce a first partial result 102 of non-words found in the first
data partition. The second set of DT execution modules (e.g.,
1.1,2_1,3_1,4_1,and 5_1 per the DST allocation informa-
tion of FIG. 32) executes task 1_1 to produce a second partial
result 102 of non-words found in the second data partition.
The sets of DT execution modules (as per the DST allocation
information) perform task 1_1 on the data partitions until the

US 9,292,212 B2

33

“z” set of DT execution modules performs task 1_1 on the
“zth” data partition to produce a “zth” partial result 102 of
non-words found in the “zth” data partition.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 1 is assigned to process the first through
“zth” partial results to produce the first intermediate result
(R1-1), which is a list of non-words found in the data. For
instance, each set of DT execution modules 90 stores its
respective partial result in the scratchpad memory of DST
execution unit 1 (which is identified in the DST allocation or
may be determined by DST execution unit 1). A processing
module of DST execution 1 is engaged to aggregate the first
through “zth” partial results to produce the first intermediate
result (e.g., R1_1). The processing module stores the first
intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the first intermediate
result (e.g., the list of non-words). To begin the encoding, the
DST client module determines whether the list of non-words
is of a sufficient size to partition (e.g., greater than a Terra-
Byte). If yes, it partitions the first intermediate result (R1-1)
into a plurality of partitions (e.g., R1-1_1 through R1-1_m).
If the first intermediate result is not of sufficient size to par-
tition, it is not partitioned.

For each partition of the first intermediate result, or for the
first intermediate result, the DST client module uses the DS
error encoding parameters of the data (e.g., DS parameters of
data 2, which includes 3/5 decode threshold/pillar width
ratio) to produce slice groupings. The slice groupings are
stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5).

In FIG. 34, the DSTN module is performing task 1_2 (e.g.,
find unique words) on the data 92. To begin, the DSTN mod-
ule accesses the data 92 and partitions it into a plurality of
partitions 1-z in accordance with the DST allocation infor-
mation or it may use the data partitions of task 1_1 if the
partitioning is the same. For each data partition, the DSTN
identifies a set of its DT execution modules to perform task
1_2inaccordance with the DST allocation information. From
data partition to data partition, the set of DT execution mod-
ules may be the same, different, or a combination thereof. For
the data partitions, the allocated set of DT execution modules
executes task 1_2 to produce a partial results (e.g., 1% through
“zth”) of unique words found in the data partitions.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 1 is assigned to process the first through
“zth” partial results 102 of task 1_2 to produce the second
intermediate result (R1-2), which is a list of unique words
found in the data 92. The processing module of DST execu-
tion 1 is engaged to aggregate the first through “zth” partial
results of unique words to produce the second intermediate
result. The processing module stores the second intermediate
result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the second intermediate
result (e.g., the list of non-words). To begin the encoding, the
DST client module determines whether the list of unique
words is of a sufficient size to partition (e.g., greater than a
Terra-Byte). If yes, it partitions the second intermediate result
(R1-2) into a plurality of partitions (e.g., R1-2_1 through
R1-2_m). If the second intermediate result is not of sufficient
size to partition, it is not partitioned.

25

40

45

34

For each partition of the second intermediate result, or for
the second intermediate results, the DST client module uses
the DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5).

In FIG. 35, the DSTN module is performing task 1_3 (e.g.,
translate) on the data 92. To begin, the DSTN module
accesses the data 92 and partitions it into a plurality of parti-
tions 1-z in accordance with the DST allocation information
or it may use the data partitions of task 1_1 if the partitioning
is the same. For each data partition, the DSTN identifies a set
of'its DT execution modules to perform task 1_3 in accor-
dance with the DST allocation information (e.g., DT execu-
tion modules 1_1,2_1,3_1,4_1, and 5_1 translate data par-
titions 2_1 through 2_4 and DT execution modules 1_2,2_2,
3_2,4_2, and 5_2 translate data partitions 2_5 through 2_z).
For the data partitions, the allocated set of DT execution
modules 90 executes task 1_3 to produce partial results 102
(e.g., I°* through “zth™) of translated data.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 2 is assigned to process the first through
“zth” partial results of task 1_3 to produce the third interme-
diate result (R1-3), which is translated data. The processing
module of DST execution 2 is engaged to aggregate the first
through “zth” partial results of translated data to produce the
third intermediate result. The processing module stores the
third intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 2.

DST execution unit 2 engages its DST client module to
slice grouping based DS error encode the third intermediate
result (e.g., translated data). To begin the encoding, the DST
client module partitions the third intermediate result (R1-3)
into a plurality of partitions (e.g., R1-3_1 through R1-3_y).
For each partition of the third intermediate result, the DST
client module uses the DS error encoding parameters of the
data (e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The
slice groupings are stored in the intermediate result memory
(e.g., allocated memory in the memories of DST execution
units 2-6 per the DST allocation information).

As is further shown in FIG. 35, the DSTN module is per-
forming task 1_4 (e.g., retranslate) on the translated data of
the third intermediate result. To begin, the DSTN module
accesses the translated data (from the scratchpad memory or
from the intermediate result memory and decodes it) and
partitions it into a plurality of partitions in accordance with
the DST allocation information. For each partition of the third
intermediate result, the DSTN identifies a set of its DT execu-
tion modules 90 to perform task 1_4 in accordance with the
DST allocation information (e.g., DT execution modules 1_1,
2.1,3_1,4 1, and 5_1 are allocated to translate back parti-
tions R1-3_1 through R1-3_4 and DT execution modules
1.2,2 2,6_1,7_1, and 7_2 are allocated to translate back
partitions R1-3_5 through R1-3_z). For the partitions, the
allocated set of DT execution modules executes task 1_4 to
produce partial results 102 (e.g., 1% through “zth™) of re-
translated data.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 3 is assigned to process the first through
“zth” partial results of task 1_4 to produce the fourth inter-
mediate result (R1-4), which is retranslated data. The pro-
cessing module of DST execution 3 is engaged to aggregate
the first through “zth” partial results of retranslated data to
produce the fourth intermediate result. The processing mod-

US 9,292,212 B2

35

ule stores the fourth intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 3.

DST execution unit 3 engages its DST client module to
slice grouping based DS error encode the fourth intermediate
result (e.g., retranslated data). To begin the encoding, the DST
client module partitions the fourth intermediate result (R1-4)
into a plurality of partitions (e.g., R1-4_1 through R1-4_z).
For each partition of the fourth intermediate result, the DST
client module uses the DS error encoding parameters of the
data (e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The
slice groupings are stored in the intermediate result memory
(e.g., allocated memory in the memories of DST execution
units 3-7 per the DST allocation information).

In FIG. 36, a distributed storage and task network (DSTN)
module is performing task 1_5 (e.g., compare) on data 92 and
retranslated data of FIG. 35. To begin, the DSTN module
accesses the data 92 and partitions it into a plurality of parti-
tions in accordance with the DST allocation information or it
may use the data partitions oftask 1_1 if the partitioning is the
same. The DSTN module also accesses the retranslated data
from the scratchpad memory, or from the intermediate result
memory and decodes it, and partitions it into a plurality of
partitions in accordance with the DST allocation information.
The number of partitions of the retranslated data corresponds
to the number of partitions of the data.

For each pair of partitions (e.g., data partition 1 and retrans-
lated data partition 1), the DSTN identifies a set of its DT
execution modules 90 to perform task 1_5 in accordance with
the DST allocation information (e.g., DT execution modules
1.1,2_1,3_1,4_1, and 5_1). For each pair of partitions, the
allocated set of DT execution modules executes task 1_5 to
produce partial results 102 (e.g., 1* through “zth”) of a list of
incorrectly translated words and/or phrases.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 1 is assigned to process the first through
“zth” partial results of task 1_5 to produce the fifth interme-
diate result (R1-5), which is the list of incorrectly translated
words and/or phrases. In particular, the processing module of
DST execution 1 is engaged to aggregate the first through
“zth” partial results of the list of incorrectly translated words
and/or phrases to produce the fifth intermediate result. The
processing module stores the fifth intermediate result as non-
DS error encoded data in the scratchpad memory or in another
section of memory of DST execution unit 1.

DST execution unit 1 engages its DST client module to
slice grouping based DS error encode the fifth intermediate
result. To begin the encoding, the DST client module parti-
tions the fifth intermediate result (R1-5) into a plurality of
partitions (e.g., R1-5_1 through R1-5_z). For each partition
of'the fifth intermediate result, the DST client module uses the
DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5 per the
DST allocation information).

As is further shown in FIG. 36, the DSTN module is per-
forming task 1_6 (e.g., translation errors due to non-words)
on the list of incorrectly translated words and/or phrases (e.g.,
the fifth intermediate result R1-5) and the list of non-words
(e.g., the first intermediate result R1-1). To begin, the DSTN
module accesses the lists and partitions them into a corre-
sponding number of partitions.

For each pair of partitions (e.g., partition R1-1_1 and par-
tition R1-5_1), the DSTN identifies a set of its DT execution

15

25

35

40

45

50

55

60

65

36
modules 90 to perform task 1_6 in accordance with the DST
allocation information (e.g., DT execution modules 1_1,2_1,
3_1,4_1, and 5_1). For each pair of partitions, the allocated
set of DT execution modules executes task 1_6 to produce
partial results 102 (e.g., 1 through “zth™) of a list of incor-
rectly translated words and/or phrases due to non-words.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 2 is assigned to process the first through
“zth” partial results of task 1_6 to produce the sixth interme-
diate result (R1-6), which is the list of incorrectly translated
words and/or phrases due to non-words. In particular, the
processing module of DST execution 2 is engaged to aggre-
gate the first through “zth” partial results of the list of incor-
rectly translated words and/or phrases due to non-words to
produce the sixth intermediate result. The processing module
stores the sixth intermediate result as non-DS error encoded
data in the scratchpad memory or in another section of
memory of DST execution unit 2.

DST execution unit 2 engages its DST client module to
slice grouping based DS error encode the sixth intermediate
result. To begin the encoding, the DST client module parti-
tions the sixth intermediate result (R1-6) into a plurality of
partitions (e.g., R1-6_1 through R1-6_z). For each partition
of the sixth intermediate result, the DST client module uses
the DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 2-6 per the
DST allocation information).

As is still further shown in FIG. 36, the DSTN module is
performing task 1_7 (e.g., correctly translated words and/or
phrases) on the list of incorrectly translated words and/or
phrases (e.g., the fifth intermediate result R1-5) and the list of
unique words (e.g., the second intermediate result R1-2). To
begin, the DSTN module accesses the lists and partitions
them into a corresponding number of partitions.

For each pair of partitions (e.g., partition R1-2_1 and par-
tition R1-5_1), the DSTN identifies a set of its DT execution
modules 90 to perform task 1_7 in accordance with the DST
allocation information (e.g., DT execution modules 1_2,2_2,
3_2,4 2, and 5_2). For each pair of partitions, the allocated
set of DT execution modules executes task 1_7 to produce
partial results 102 (e.g., 1° through “zth™) of a list of correctly
translated words and/or phrases.

As indicated in the DST allocation information of FIG. 32,
DST execution unit 3 is assigned to process the first through
“zth” partial results of task 1_7 to produce the seventh inter-
mediate result (R1-7), which is the list of correctly translated
words and/or phrases. In particular, the processing module of
DST execution 3 is engaged to aggregate the first through
“zth” partial results of the list of correctly translated words
and/or phrases to produce the seventh intermediate result. The
processing module stores the seventh intermediate result as
non-DS error encoded data in the scratchpad memory or in
another section of memory of DST execution unit 3.

DST execution unit 3 engages its DST client module to
slice grouping based DS error encode the seventh intermedi-
ate result. To begin the encoding, the DST client module
partitions the seventh intermediate result (R1-7) into a plu-
rality of partitions (e.g., R1-7_1 through R1-7_z). For each
partition of the seventh intermediate result, the DST client
module uses the DS error encoding parameters of the data
(e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The
slice groupings are stored in the intermediate result memory

US 9,292,212 B2

37

(e.g., allocated memory in the memories of DST execution
units 3-7 per the DST allocation information).

In FIG. 37, the distributed storage and task network
(DSTN) module is performing task 2 (e.g., find specific words
and/or phrases) on the data 92. To begin, the DSTN module
accesses the data and partitions it into a plurality of partitions
1-z in accordance with the DST allocation information or it
may use the data partitions oftask 1_1 if the partitioning is the
same. For each data partition, the DSTN identifies a set of its
DT execution modules 90 to perform task 2 in accordance
with the DST allocation information. From data partition to
data partition, the set of DT execution modules may be the
same, different, or a combination thereof. For the data parti-
tions, the allocated set of DT execution modules executes task
2 to produce partial results 102 (e.g., 1% through “zth”) of
specific words and/or phrases found in the data partitions.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 7 is assigned to process the first through
“zth” partial results of task 2 to produce task 2 intermediate
result (R2), which is a list of specific words and/or phrases
found in the data. The processing module of DST execution 7
is engaged to aggregate the first through “zth” partial results
of specific words and/or phrases to produce the task 2 inter-
mediate result. The processing module stores the task 2 inter-
mediate result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 7.

DST execution unit 7 engages its DST client module to
slice grouping based DS error encode the task 2 intermediate
result. To begin the encoding, the DST client module deter-
mines whether the list of specific words and/or phrases is of a
sufficient size to partition (e.g., greater than a Terra-Byte). If
yes, it partitions the task 2 intermediate result (R2) into a
plurality of partitions (e.g., R2_1 through R2_m). If the task
2 intermediate result is not of sufficient size to partition, it is
not partitioned.

For each partition of the task 2 intermediate result, or for
the task 2 intermediate results, the DST client module uses the
DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-4, and 7).

In FIG. 38, the distributed storage and task network
(DSTN) module is performing task 3 (e.g., find specific trans-
lated words and/or phrases) on the translated data (R1-3). To
begin, the DSTN module accesses the translated data (from
the scratchpad memory or from the intermediate result
memory and decodes it) and partitions it into a plurality of
partitions in accordance with the DST allocation information.
For each partition, the DSTN identifies a set of its DT execu-
tion modules to perform task 3 in accordance with the DST
allocation information. From partition to partition, the set of
DT execution modules may be the same, different, or a com-
bination thereof. For the partitions, the allocated set of DT
execution modules 90 executes task 3 to produce partial
results 102 (e.g., 1% through “zth”) of specific translated
words and/or phrases found in the data partitions.

Asindicated in the DST allocation information of FIG. 32,
DST execution unit 5 is assigned to process the first through
“zth” partial results of task 3 to produce task 3 intermediate
result (R3), which is a list of specific translated words and/or
phrases found in the translated data. In particular, the process-
ing module of DST execution 5 is engaged to aggregate the
first through “zth” partial results of specific translated words
and/or phrases to produce the task 3 intermediate result. The
processing module stores the task 3 intermediate result as

20

40

45

55

38

non-DS error encoded data in the scratchpad memory or in
another section of memory of DST execution unit 7.

DST execution unit 5 engages its DST client module to
slice grouping based DS error encode the task 3 intermediate
result. To begin the encoding, the DST client module deter-
mines whether the list of specific translated words and/or
phrases is of a sufficient size to partition (e.g., greater than a
Terra-Byte). If yes, it partitions the task 3 intermediate result
(R3) into a plurality of partitions (e.g., R3_1 through R3_m).
If the task 3 intermediate result is not of sufficient size to
partition, it is not partitioned.

For each partition of the task 3 intermediate result, or for
the task 3 intermediate results, the DST client module uses the
DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-4, 5, and
D.

FIG. 39 is a diagram of an example of combining result
information into final results 104 for the example of FIG. 30.
In this example, the result information includes the list of
specific words and/or phrases found in the data (task 2 inter-
mediate result), the list of specific translated words and/or
phrases found in the data (task 3 intermediate result), the list
of'non-words found in the data (task 1 first intermediate result
R1-1), the list of unique words found in the data (task 1
second intermediate result R1-2), the list of translation errors
due to non-words (task 1 sixth intermediate result R1-6), and
the list of correctly translated words and/or phrases (task 1
seventh intermediate result R1-7). The task distribution mod-
ule provides the result information to the requesting DST
client module as the results 104.

FIG. 40A is a schematic block diagram of another embodi-
ment of a distributed storage and task (DST) execution unit
350 that includes a controller 352 and a memory 354. The
memory 354 includes one or more memory devices 356 and
one or more alternate memory devices 358. The controller
352 functions to receive slice access requests 360 with
regards to slices 364 stored in at least one of the memory
devices 356 and the alternate memory devices 358. The con-
troller 352 further functions to generate slice access
responses 362 with regards to the slice access requests 360.

A slice access request 360 of the slice access requests 360
may include one or more of a slice name, a request type, and
a slice 364 of slices 364. A slice access response 362 of the
slice access responses 362 may include one or more of
another slice name, a response type, and another slice 364 of
the slices 364. Each of the one or more memory devices 356
may be mapped to a range of slice names such that corre-
sponding slices 364 associated with the range of slice names
are mapped to the memory device 356 and are stored within
the memory device 356.

From time to time at least one memory device 356 of the
one or more memory devices 356 may be unavailable (e.g.,
failed, too busy) producing an unavailable memory device
356. The alternate memory device 358 may be utilized to
store a slice mapped to the unavailable memory device 356
when the unavailable memory device 356 is unavailable. For
example, the controller 352 receives a slice access request
360 that includes slice name 1AB6 and a slice 364. The
controller 352 identifies memory device 3 as mapped to the
slice 364 based on the slice name 1 AB6 utilizing a slice name
to memory device identifier (ID) table lookup. When memory
device 3 is unavailable, the controller 352 selects one alter-
nate memory device 358 of the alternate memory devices 358
and stores the slice in selected alternate memory device 358.

US 9,292,212 B2

39

A method of operation of the DST execution unit 350 is
discussed in greater detail with reference to FIG. 40B.

FIG. 40B is a flowchart illustrating an example of storing
slices. The method begins at step 366 where, for a write slice
request, a processing module (e.g., of a distributed storage
and task (DST) execution unit) determines whether a corre-
sponding memory device is available. The determining
includes identitying the memory device based on the write
slice request (e.g., a slice name to memory device identifier
(ID) table lookup) and determining whether the identified
memory device is available (e.g., accessing status table for
availability status, initiating a query). The method branches to
step 370 when the corresponding memory device is not avail-
able. The method continues to step 368 when the correspond-
ing memory device is available. The method continues at step
368 where the processing module stores a slice of the write
slice request in the memory device.

The method continues at step 370 where the processing
module selects an alternate memory device when the corre-
sponding memory device is unavailable. The selecting
includes choosing an alternate memory device of the DST
execution unit that is available and has favorable storage
attributes (e.g., enough available storage space). The method
continues at step 372 where the processing module stores the
slice in the alternate memory device. The method continues at
step 374 where the processing module updates a slice location
table to associate a slice name of the slice with an identifier of
the alternate memory device.

When the memory device is available, the method contin-
ues at step 376 where the processing module migrates one or
more slices from the alternate memory device to the memory
device, where the one or more slices includes the slice as
migrated slices. The method continues at step 378 where the
processing module updates the slice location table to associ-
ate the migrated slices with an identifier of the memory device
and to disassociate the migrated slices with the identifier of
the alternate memory device.

FIG. 41A is a schematic block diagram of another embodi-
ment of a distributed computing system that includes a dis-
tributed storage and task (DST) client module 34, a distrib-
uted storage and task network (DSTN) module 22, and a
DSTN managing unit 18. Alternatively, a dispersed storage
processing module may substitute for the DST client module
34, a dispersed storage network managing unit may substitute
for the DSTN managing unit, and a dispersed storage network
memory may substitute for the DSTN module 22. The DSTN
module 22 includes a plurality of DST execution units 36. The
DST client module 34 functions to send slice access requests
380to the DSTN module 22 to gain access to slices stored one
or more DST execution units 36. The DSTN module 22
generates slice access responses 382 to send to the DST client
module 34 in response to one or more slice access requests
380.

The DSTN managing unit 18 is operable to generate a slice
access restriction indicator 386 with regards to access of one
ormoresslices stored in the DSTN module 22. The slice access
restricted indicator 386 indicates restricted access to one or
more slices. The restricted access includes one or more of at
least one slice name associated with the one or more slices, a
time restriction, a requesting unit identifier (ID) restriction,
and an access type restriction. The access type restriction may
include one or more of a client access restriction and a slice
rebuilding restriction. A restriction may indicate whether
access is allowed or disallowed. The DSTN managing unit 18
generates the slice access restriction based on one or more of
an indication of nonpayment for utilization of storage ser-
vices, an account freeze indicator, a security breach indicator,

10

15

20

25

30

35

40

45

50

55

60

40

an improper access indicator, and an over utilization of stor-
age resources indicator. For example, a slice access restriction
indicator 386 may indicate that reading a slice associated with
slice name B457 is not allowed by a client requesting entity
and is allowed for a slice rebuilding access type. The DSTN
managing unit 18 sends the slice access restriction indicator
386 to the DSTN module 22 to enable utilization of the slice
access restriction indicator 386 by one or more of the DST
execution units 36 upon receiving each of the slice access
request 380.

In an example of operation, a first DST execution unit 36
receives the slice access restriction indicator 386 from the
DSTN managing unit 18 that restricts access to the slice
associated with slice name B457 such that client access is
disallowed and rebuilding access is allowed. Subsequent to
receiving the slice access restriction indicator 386, the first
DST execution unit 36 receives a slice access request 380
from the DST client module 34 for the slice associated with
slice name B457. The first DST execution unit 36 does not
allow access to the slice by the DST client module 34 in
accordance with the slice access restriction indicator 386.
Alternatively, or in addition to, the first DST execution unit 36
generates a corresponding slice access response 382 indicat-
ing that access is denied. In another example of operation, the
first DST execution unit 36 receives a rebuilding slice access
request 384 from a second DST execution unit 36 for the slice
associated with slice name B457. The first DST execution
unit 36 allows access to the slice by processing the rebuilding
slice access request 384 in accordance with the slice access
restriction indicator 386. For instance, the first DST execution
unit 36 retrieves the slice from a memory of the first DST
execution unit 36 and sends the slice to the second DST
execution unit 36. The method of operation of the system is
described in greater detail with reference to FIG. 41B.

FIG. 41B is a flowchart illustrating an example of access-
ing a stored slice. The method begins at step 388 where a
processing module (e.g., of a distributed storage and task
(DST) execution unit) receives a slice access request. The
slice access request includes one more of an access type
indicator, a requesting entity identifier (ID), a rebuilding indi-
cator, a client indicator, and data. The method continues at
step 390 where the processing module determines whether
the slice access request is associated with an access restric-
tion. The determining includes receiving an access restriction
indicator, comparing a slice name of the indicator with a slice
name of the slice access request, and comparing the slice
access request with restrictions of indicator. For example, the
processing module determines that the slice access request is
associated with the access restriction when the slice name of
the indicator is substantially the same as the slice name of the
slice access request. The method branches to step 394 when
the slice access request is associated with the access restric-
tion. The method continues to step 392 when the slice access
request is not associated with the access restriction. The
method continues at step 392 where the processing module
executes the access request (e.g., process the access request).

The method continues at step 394 where the processing
module determines whether the slice access request is asso-
ciated with rebuilding when the slice access request is asso-
ciated with the access restriction. The determining includes
identifying a requesting entity as at least one of a client/user
device, another DST execution unit, and a rebuilding module.
The determining may be based on one or more of the access
type indicator, the requesting entity ID, the rebuilding indi-
cator, and the client indicator. For example, the processing
module determines that the slice access request is associated
with rebuilding when the requesting entity 1D is associated

US 9,292,212 B2

41

with another DST execution unit. As another example, the
processing module determines that the slice access request is
not associated with rebuilding when the requesting entity 1D
is associated with a user device and the client indicator is true.
The method branches to step 398 when the access request is
associated with rebuilding. The method continues to step 396
when the slice access request is not associated with rebuild-
ing. The method continues at step 396 where the processing
module sends an error message. The sending includes gener-
ating a message to indicate an access restriction violation and
outputting the message (e.g., to a requesting entity, to a DST
managing unit). The method continues at step 398 where the
processing module executes the rebuilding access request
when the access request is associated with rebuilding. For
example, the processing module retrieves a slice associated
with the rebuilding access request and outputs the slice to the
requesting entity (e.g., another DST execution unit associated
with rebuilding).

FIG. 42 is a flowchart illustrating an example of establish-
ing a billing rate. The method begins at step 400 where a
processing module (e.g., a distributed storage and task (DST)
client module) receives a rebuild slice request that includes a
slice name corresponding to a slice error. The slice error
includes at least one of a missing slice error and a slice error
associated with an unfavorable integrity value (e.g., corrupted
slice, tampered slice). The method continues at step 402
where the processing module identifies a failure root cause
associated with the slice error. The identifying may be based
on one or more of an error message, an event log, a query, and
atest. The method continues at step 404 where the processing
module determines whether the root cause is user-centric.
Theuser-centric root causes includes at least one of a slice not
written, a slice that committed, and old slice revision was not
deleted, and an integrity value mismatch. Non-user-centric
root causes includes at least one of a memory device failure,
a DST execution unit failure, a network outage, an un-trusted
DST execution unit, and a maliciously corrupted slice. The
method branches to step 408 when the root cause is not
user-centric. The method continues to step 406 when the root
cause is user-centric.

The method continues at step 406 where the processing
module establishes a user pricing level when the root cause is
user-centric. The establishing includes at least one of a
lookup, a query, and receiving. For example, the processing
module accesses a registry to extract the user pricing level
based on a vault identifier (ID) associated with the slice of the
slice error. The method branches to step 410. The method
continues at step 408 where the processing module estab-
lishes a non-user pricing level when the root cause is not
user-centric. The establishing includes at least one of a
lookup, a query, and receiving. For example, the processing
module accesses a registry to extract the non-user pricing
level for the system. The method continues to step 410.

The method continues at step 410 where the processing
module facilitates rebuilding the slice of the slice error. The
facilitating includes at least one of directly rebuilding the
slice and outputting a rebuild slice request that includes the
slice name of'the slice error. The method continues at step 412
where the processing module generates billing information
for the rebuilding based on one of the user pricing level and
the non-user pricing level. Alternatively, or in addition to, the
generating of the billing information may be based on a
magnitude of resources utilized to rebuild the slice of the slice
error.

FIG. 43A is a schematic block diagram of another embodi-
ment of a distributed storage and task (DST) execution unit 36
that includes a controller 414 and a memory 416. The memory

10

20

25

30

35

40

45

50

55

60

65

42

416 may be implemented as one more of random access
memory, dynamic random access memory, a magnetic disk
drive, and an optical disk drive. The memory 416 may be
organized into a plurality of N contiguous memory blocks
1-N. For example, N=1000 memory blocks and each block is
510 bytes. The controller 414 receives a data identifier (ID)
418 for data 420 to store in the memory 416. The controller
414 encodes the data 420 using a dispersed storage error
coding function to produce a set of encoded data slices. The
controller 414 identifies a set of storage locations within the
memory 416 for storing the set of encoded data slices based
on one or more of the data ID 418 and available storage
locations within the memory 416. The identifying may be
accomplished in a variety of ways. In a first way, the set of
storage locations are contiguous within an available portion
of the memory 416. In a second way, the sets of storage
locations are equidistant from each other across the memory
416. Next, the controller stores the set of encoded data slices
at the set of storage locations within the memory 416. A
method to store the data 420 in the memory 416 is discussed
in greater detail with reference to FIG. 43B.

FIG. 43B is a flowchart illustrating an example of storing
data. The method begins at step 422 where a processing
module (e.g., of a distributed storage and task (DST) execu-
tion unit) receives a write request to store a data block of data.
The write request includes one of more of a virtual memory
identifier (ID), an offset, the data block, a data segment, a data
slice, and a data object. A size of the data block may be
selected to be substantially the same as a size of memory
blocks ofamemory (e.g., 510 bytes). Two or more data blocks
may be generated when a size of the data is greater than a size
of the data block.

The method continues at step 424 where the processing
module obtains encoding parameters in accordance with a
virtual memory approach. The obtaining includes at least one
of retrieving, receiving, and determining. For example, the
processing module retrieves the encoding parameters from a
registry associated with the DST execution unit. The encod-
ing parameters includes one or more of a pillar width and a
decode threshold. The method continues at step 426 where
the processing module encodes the data block using a dis-
persed storage error coding function in accordance with the
encoding parameters to produce a set of encoded data slices.
For example, the processing module encodes the data block to
produce 20 slices that are 51 bytes each when the data block
is 510 bytes, the decode threshold is 10, and the pillar width
is 20.

The method continues at step 428 where the processing
module identifies one or more physical memory devices for
storage of the set of encoded data slices. The identifying may
be based on one or more of a lookup and the encoding param-
eters. For example, the processing module identifies 20 stor-
age locations equidistant (e.g., 20 memory blocks every 50th
memory block) across 1000 memory blocks of a memory that
includes the one or more physical memory devices. Next, the
processing module identifies the one or more physical
memory devices based on identifiers of the 20 memory
blocks.

The method continues at step 430 where the processing
module maps an offset to the set of storage locations within
the identified one or more physical memory devices in accor-
dance with the encoding parameters to produce a mapping.
The offset includes a common offset into each of the 20
memory blocks based on one of more of a received offset, a
lookup, a next available offset within the 20 memory blocks,
and a message. For example, there are 10 offsets within each
block when slice sizes are 51 bytes and the block size is 510

US 9,292,212 B2

43

bytes. For instance, a virtual memory ID 1 starts with offset
zero in memory blocks 1, 51, 101, etc. As another instance, a
virtual memory ID 2 starts with offset 1 in the memory blocks
1, 51, 101, etc. As yet another instance, a virtual memory ID
11 starts with offset zero in memory blocks 2, 52, 102, etc.
The method continues at step 432 where the processing mod-
ule facilitates storage of the set of encoded data slices at the
set of storage locations in accordance with the mapping. For
example, the processing module stores the set of 20 51 byte
slices at a common offset within each of the 20 memory
blocks which are each spaced apart by 50 memory blocks.

FIG. 44 A is a schematic block diagram of an embodiment
of a dispersed storage network (DSN) system that includes a
computing device 434 and a dispersed storage network
(DSN) 436. The DSN 436 includes a plurality of storage
nodes 440. Alternatively, the DSN 436 may be implemented
utilizing one or more ofa distributed storage and task network
(DSTN), a DSTN module, a dispersed storage network
memory, and a plurality of dispersed storage (DS) units. Each
storage node 440 may be implemented utilizing at least one of
a DS unit, a storage server, a storage unit, a storage module, a
memory device, a memory, a distributed storage and task
(DST) execution unit, a user device, a DST processing unit,
and a DST processing module. The computing device 434
may be implemented utilizing at least one of a server, a
storage unit, a storage node of the plurality of storage nodes
440, a DSTN managing unit, a DSN managing unit, a DS unit,
a storage server, a storage module, a DS processing unit, a
DST execution unit, a user device, a DST processing unit, a
storage integrity processing unit, a DSTN storage integrity
processing unit, and a DST processing module. For example,
the computing device 434 is implemented as a first storage
node of the plurality of storage nodes 440. The computing
device 434 includes a dispersed storage (DS) module 442.
The DS module 442 includes an error detection module 444,
atraits module 446, a priority error detection module 448, and
a rebuilding module 450.

The system functions to detect a storage error of an
encoded data slice, identify encoded data slices having at
least one storage trait in common with the encoded data slice
to produce identified encoded data slices 458, prioritize stor-
age error detection analysis of the identified encoded data
slices 458, and rebuild encoded data slices associated with
storage errors. With regards to the detecting of the storage
error of the encoded data slice, the error detection module 444
detects, in accordance with a rebuilding process, the storage
error of the encoded data slice stored in a storage node 440 of
the DSN 436 and identifies the encoded data slice for rebuild-
ing (e.g., provides an identity (ID) of the encoded data slice
for rebuilding 452).

The detecting and identifying includes the error detection
module 444 performing a series of detection steps in accor-
dance with the rebuilding process. In a first detection step, the
error detection module 444 scans addresses of the DSN 436.
The scanning includes identifying the addresses of the DSN
436 based on one or more of a scanning address range assign-
ment, a request, and receiving an error message. In a second
detection step, the error detection module 444 identifies the
storage node 440 in accordance with the scanning of the
addresses of the DSN 436. The identifying includes at least
one of accessing a DSN address-to-storage node identity
table, initiating a query, receiving a response, and extracting
an identity of an error message. In a third detection step, the
error detection module 444 sends a rebuilding feedback
request 454 to the storage node 440. For example, the error
detection module 444 sends a list slice request as the rebuild-
ing feedback request 454. As another example, the error

25

40

45

50

55

44

detection module 444 sends a list slice digest request as the
rebuilding feedback request 454.

In a fourth detection step of the series of detection steps in
accordance with the rebuilding process, the error detection
module 444 receives a rebuilding feedback response 456
from the storage unit 440, where the rebuilding feedback
response 456 includes information that identifies encoded
data slices stored in the storage node 440. For example,
rebuilding feedback response 456 includes slice names of
encoded data slices stored in the storage node 440 that are not
associated with the storage error and slice names of encoded
data slices stored in the storage node associated with the
storage error (e.g., failing an encoded data slice integrity test).
In a fifth detection step, the error detection module 444 tests
validity of the encoded data slices identified by the storage
node 440 based on the rebuilding feedback response 456 and
comparative encoded data slice information (e.g., rebuilding
feedback responses 456 from other storage nodes 440). For
example, the error detection module 444 compares a slice
name list from the storage node 440 to other slice name lists
from other storage nodes 440, where a set of storage nodes
stores a set of encoded data slices that includes the encoded
data slice and the set of storage nodes includes the storage
node and the other storage nodes. When the comparative
encoded data slice information for the encoded data slice
indicates a validity issue (e.g., a missing slice, a storage error
associated with a corrupted slice), in a sixth detection step, the
error detection module 444 identifies the encoded data slice
as having the storage error to produce the ID of the encoded
data slice for rebuilding 452.

With regards to the identifying the encoded data slices
having the at least one storage trait in common with the
encoded data slice to produce the identified encoded data
slices, the traits module 446 identifies one or more storage
traits associated with the encoded data slice and identifies
encoded data slices having at least one storage trait in com-
mon with the one or more storage traits of the encoded data
slice to produce identified encoded data slices 458. A storage
trait of the storage traits includes one or more of a write
timeframe, a writing entity identifier, a data owner identifier,
a vault identifier, previous rebuilding operations, a common
network connection (e.g., end to end connection), a common
network path (e.g., portion of end to end path in common),
and an address being in an address range. The traits module
446 identifies the encoded data slices having the at the least
one storage trait in common with the one or more storage
traits of the encoded data slice by identifying first priority
encoded data slices of the identified encoded data slices 458
that have more than one storage trait in common with the one
ormore storage traits of the encoded data slice and identifying
second priority encoded data slices of the identified encoded
data slices 458 that have one storage trait in common with the
one or more storage traits of the encoded data slice, where the
first priority encoded data slices have a higher priority than
the second priority encoded data slices.

With regards to the prioritizing the storage error detection
analysis of the identified encoded data slices 458, the priority
error detection module 448 prioritizes, within the rebuilding
process, storage error detection analysis of the identified
encoded data slices 458 over other encoded data slices stored
in the DSN 436 and when a storage error is detected for one of
the identified encoded data slices 458, identifies the one of'the
identified encoded data slices for rebuilding to produce and
ID of the one of the identified encoded data slices for rebuild-
ing 460. The priority error detection module 448 prioritizes
the storage error detection analysis of the identified encoded
data slices 458 by a series of prioritizing steps. A first priori-

US 9,292,212 B2

45

tizing step includes the priority error detection module 448
pausing scanning addresses of the DSN 436. A second pri-
oritizing step includes the priority error detection module 448
identifying addresses of the encoded data slices having at
least one storage trait in common with the one or more storage
traits of the encoded data slice. A third prioritizing step
includes the priority error detection module 448 sending
rebuilding feedback requests 454 to storage nodes 440 of the
DSN 436 storing the encoded data slices based on the
addresses of the encoded data slices. A fourth prioritizing
steps includes the priority error detection module 448 receiv-
ing rebuilding feedback responses 456 from the storage nodes
440 of the DSN 436. Alternatively, or in addition to, the error
detection module 444 performs the series of prioritizing
steps.

With regards to the rebuilding the encoded data slices
associated with the storage errors, the rebuilding module 450
facilitates rebuilding of the encoded data slice and facilitates
rebuilding ofthe one of the identified encoded data slices. The
facilitating, by the rebuilding module 450, includes one or
more of sending identifiers of the encoded data slice and the
one of the identified encoded data slices to a rebuilding func-
tion and directly rebuilding. The directly rebuilding includes
retrieving at least a decode threshold number of encoded data
slices 462 of a set of encoded data slices that includes a
subject encoded data slice for rebuilding (e.g., the subject
encoded data slice for rebuilding includes one of the encoded
data slice and the one of the identified encoded data slices),
decoding the decode threshold number of encoded data slices
to reproduce a data segment, re-encoding the data segment to
reproduce the subject encoded data slice for rebuilding, and
sending the subject encoded data slice for rebuilding (e.g.,
rebuilt slice 464) to a corresponding storage node 440 for
storage therein.

The system may further function to identify further storage
errors. When identifying further storage errors, the traits
module 446 performs a series of further trait steps. When the
storage error is detected for the one of the identified encoded
data slices, in a first further trait step, the traits module 446
determines storage traits for the one of the identified encoded
data slices. In a second further trait step, the traits module 446
generates updated storage traits based on the storage traits for
the one of the identified encoded data slices and the one or
more storage traits of the encoded data slice. In a third further
trait step, the traits module 446 adjusts the identifying the
encoded data slices based on the updated storage traits to
produce updated identified encoded data slices (e.g., to
expand or contract identity encoded data slices). When iden-
tifying further storage errors, the priority error detection mod-
ule 448 prioritizes, within the rebuilding process, storage
error detection analysis of the updated identified encoded
data slices.

FIG. 44B is aflowchart illustrating an example of detecting
storage errors. The method begins at step 470 where a pro-
cessing module of one or more computing devices (e.g., a
server of a dispersed storage network (DSN)) detects, in
accordance with a rebuilding process, a storage error of an
encoded data slice stored in a storage node of a dispersed
storage network (DSN). The rebuilding process includes a
series of detecting steps. A first step includes scanning
addresses of the DSN. A second step includes identifying the
storage node in accordance with the scanning of the addresses
of the DSN. A third step includes sending a rebuilding feed-
back request to the storage node. A fourth step includes
receiving a rebuilding feedback response from the storage
unit, where the rebuilding feedback response includes infor-
mation that identifies encoded data slices stored in the storage

10

15

20

25

30

35

40

45

50

55

60

65

46

node. A fifth step includes testing validity of the encoded data
slices identified by the storage node based on the rebuilding
feedback response and comparative encoded data slice infor-
mation (e.g., other slices in a set of slices having common
DSN addresses including a common source name, a common
generation, and a common revision number). When the com-
parative encoded data slice information for the encoded data
slice indicates a validity issue, a sixth step includes identify-
ing the encoded data slice as having the storage error.

The method continues at step 472 where the processing
module identifies the encoded data slice for rebuilding. The
method continues at step 474 where the processing module
identifies one or more storage traits associated with the
encoded data slice. The method continues at step 476 where
the processing module identifies encoded data slices having
at least one storage trait in common with the one or more
storage traits of the encoded data slice to produce identified
encoded data slices. The identifying the encoded data slices
having at the least one storage trait in common with the one or
more storage traits of the encoded data slice includes identi-
fying first priority encoded data slices of the identified
encoded data slices that have more than one storage trait in
common with the one or more storage traits of the encoded
data slice and identifying second priority encoded data slices
of'the identified encoded data slices that have one storage trait
in common with the one or more storage traits of the encoded
data slice, wherein the first priority encoded data slices have
a higher priority than the second priority encoded data slices.

The method continues at step 478 where the processing
module prioritizes, within the rebuilding process, storage
error detection analysis of the identified encoded data slices
over other encoded data slices stored in the DSN. The priori-
tizing the storage error detection analysis of the identified
encoded data slices includes a series of prioritizing steps. A
first prioritizing step includes pausing scanning addresses of
the DSN. A second prioritizing step includes identifying
addresses of the encoded data slices having at least one stor-
age trait in common with the one or more storage traits of the
encoded data slice. A third prioritizing step includes sending
rebuilding feedback request to storage nodes of the DSN
storing the encoded data slices based on the addresses of the
encoded data slices.

When a storage error is detected for one of the identified
encoded data slices, the method continues at step 480 where
the processing module identifies the one of the identified
encoded data slices for rebuilding. When the storage error is
detected for the one of the identified encoded data slices, the
method continues at step 482 where the processing module
determines storage traits for the one of the identified encoded
data slices. The method continues at step 484 where the
processing module generates updated storage traits based on
the storage traits for the one of the identified encoded data
slices and the one or more storage traits of the encoded data
slice. The method continues at step 486 where the processing
module adjusts the identifying the encoded data slices based
on the updated storage traits to produce updated identified
encoded data slices (e.g., expand or contract identified
encoded data slices). The method continues at step 488 where
the processing module prioritizes, within the rebuilding pro-
cess, storage error detection analysis of the updated identified
encoded data slices. The method continues at step 490 where
the processing module facilitates rebuilding of the encoded
data slice (e.g., issue a request to a rebuilding entity and/or
directly rebuild). The method continues at step 492 where the
processing module facilitates rebuilding of the one of the
identified encoded data slices and the updated identified
encoded data slices when identified.

US 9,292,212 B2

47

FIG. 44C is a schematic block diagram of another embodi-
ment of a dispersed storage network (DSN) system that
includes a computing device 500 and a dispersed storage
network (DSN) 436. The DSN 436 includes a plurality of
storage nodes 440. Alternatively, the DSN 436 may be imple-
mented utilizing one or more of a distributed storage and task
network (DSTN), a DSTN module, a dispersed storage net-
work memory, and a plurality of dispersed storage (DS) units.
The computing device 500 may be implemented utilizing at
least one of a server, a storage unit, a storage node of the
plurality of storage nodes 440, a DSTN managing unit, a DSN
managing unit, a DS unit, a storage server, a storage module,
a DS processing unit, a DST execution unit, a user device, a
DST processing unit, a storage integrity processing unit, a
DSTN storage integrity processing unit, and a DST process-
ing module. For example, the computing device 500 is imple-
mented as a first storage node ofthe plurality of storage nodes
440. The computing device 500 includes a dispersed storage
(DS) module 502. The DS module 502 includes a common
traits module 504 and a storage error detection module 506.

The system functions to determine common storage traits
of'encoded data slices stored in the DSN 436 and to perform
storage error detection analysis on some of the encoded data
slices. With regards to the determining the common storage
traits of the encoded data slices stored in the DSN 436, the
common traits module 504 determines the common storage
traits of the encoded data slices stored in the DSN 436 to
produce groups of common storage trait encoded data slices
508 (e.g., identities by group of the common storage trait
encoded data slices are produced).

With regards to the performing storage error detection
analysis on some of the encoded data slices, the storage error
detection module 506 performs a series of detecting steps. In
a first detecting step, the storage error detection module 506
executes the storage error detection analysis on a sampling of
encoded data slices (e.g., 1%) of one of the groups of common
storage trait encoded data slices 508. The storage error detec-
tion module 506 executes the storage error detection analysis
onthe sampling of encoded data slices by a series of execution
steps. A first execution step includes the storage error detec-
tion module 506 sending a rebuilding feedback request 454 to
one or more storage nodes 440 of the DSN 436 storing the
sampling of the encoded data slices. A second execution step
includes the storage error detection module 506 receiving
rebuilding feedback responses 456 from the one or more
storage units 440, where one of the rebuilding feedback
responses 456 includes storage information regarding the
encoded data slice. A third execution step includes the storage
error detection module 506 testing validity of the sampling of
the encoded data slices based on the one of the rebuilding
feedback responses 456 and comparative encoded data slice
information (e.g., rebuilding feedback responses 456 from
other storage nodes 440 with regards to other encoded data
slices of a set of encoded data slices corresponding to a
common DSN address including a common source name, a
common generation number, and a common revision num-
ber). When the comparative encoded data slice information
for the encoded data slice indicates a validity issue (e.g., a
storage error), a fourth execution step includes the storage
error detection module 506 identifying the encoded data slice
as having the detected storage error (e.g., a slice error 510).
Alternatively, or in addition to, the storage error detection
module 506 facilitates rebuilding of the identified encoded
data slice having the detected storage error.

When the sampling of the encoded data slices passes the
storage error detection analysis, in a second detecting step,
the storage error detection module 506 executes the storage

20

30

40

45

55

48

error detection analysis on another sampling of encoded data
slices of another one of the groups of common storage trait
encoded data slices 508. When an encoded data slice of the
sampling of encoded data slices has a detected storage error,
in a third detecting step, the storage error detection module
506 executes the storage error detection analysis on a sub-
stantial number (e.g., all, nearly all of the encoded data slices)
of'the encoded data slices of the one of the groups of common
storage trait encoded data slices 508. Alternatively, or in
addition to, the storage error detection module 506 facilitates
rebuilding of the encoded data slice having the detected stor-
age error. In a similar fashion, the storage error detection
module 506 may facilitate rebuilding of any of the substantial
number of the encoded data slices of the one of the groups of
common storage trait encoded data slices 508 when further
storage errors are detected.

FIG. 44D is a flowchart illustrating another example of
detecting storage errors. The method begins at step 520 where
aprocessing module of one or more computing devices (e.g.,
a server of a dispersed storage network (DSN)) determines
common storage traits of encoded data slices stored in a
dispersed storage network (DSN) to produce groups of com-
mon storage trait encoded data slices. The method continues
at step 522 where the processing module sends a rebuilding
feedback request to one or more storage nodes of the DSN
storing a sampling of the encoded data slices to initiate
executing a storage error detection analysis on the sampling
of'encoded data slices of one of the groups of common storage
trait encoded data slices. The method continues at step 524
where the processing module receives rebuilding feedback
responses from the one or more storage units, where one of
the rebuilding feedback responses includes storage informa-
tion regarding an encoded data slice.

The method continues at step 526 where the processing
module tests validity of the sampling of the encoded data
slices based on the one of the rebuilding feedback responses
and comparative encoded data slice information. The method
continues at step 528 where the processing module deter-
mines whether the testing indicates a validity issue. The pro-
cessing module determines that the testing indicates the valid-
ity issue when the comparative encoded data slice
information for the encoded data slice indicates the validity
issue. When the sampling of the encoded data slices passes
the storage error detection analysis (e.g., no validity issue),
the method loops back to step 522 where the processing
module executes the storage error detection analysis on
another sampling of encoded data slices of another one of the
groups of common storage trait encoded data slices. When the
testing indicates the validity issue, the method continues to
step 530. The method continues at step 530 where the pro-
cessing module identifies the encoded data slice as having the
detected storage error. When the encoded data slice of the
sampling of encoded data slices has the detected storage error,
the method continues at step 532 where the processing mod-
ule executes the storage error detection analysis on a substan-
tial number of the encoded data slices of the one of the groups
of common storage trait encoded data slices.

FIG. 45 is a flowchart illustrating an example of upgrading
software. The method begins at step 534 where a processing
module (e.g., a distributed storage and task (DST) client
module) receives an upgrade request for software of a set of
DST execution units. The request includes one or more of a
storage set identifier (ID), a DST execution unit ID, software,
a software ID, and a software storage location. The method
continues at step 536 where the processing module identifies
available DST execution units of the set of DST execution

US 9,292,212 B2

49

units. The identifying includes at least one of a query, a test,
receiving an error message, and a status lookup.

The method continues at step 538 where the processing
module determines a number of active DST execution units of
the set of DST execution units. The number of active DST
execution units is utilized to maintain a minimal number of
DST execution units while a software upgrade sequence is
executed. The minimal number of DST execution units may
be substantially the same as a largest decode threshold num-
ber associated with a vault of a plurality of vaults supported
by the set of DST execution units. The determining may be
based on one or more of a vault list associated with the set of
DST execution units, a lookup, a predetermination, and
receiving. For example, the processing module determines
the number of active DST execution units as 10 when the set
of DST execution units supports two vaults, where a first vault
is associated with a decode threshold of 6 and a second vault
is associated with a decode threshold of 10.

The method continues at step 540 where the processing
module selects one or more DST execution units of the set of
DST execution units for software upgrading based on the
available DST execution units such that at least an active
number of DST execution units of the set of DST execution
units remain active during an upgrade sequence. The select-
ing includes identifying DST execution units that have not
previously been upgraded with the latest revision of software.
The selecting further includes identifying DST execution
units that are available (e.g., active and capable of performing
an upgrade sequence).

The method continues at step 542 where the processing
module facilitates upgrading software of the selected one or
more DST execution units in accordance with the upgrade
request. The facilitating includes one or more of forwarding
the upgrade request to the selected units, sending the software
to the selected units, sending the software location to the
selected units, verifying that the software upgrade sequence is
complete, and indicating that the software upgrade sequence
is complete when verified (e.g., outputting a message). The
method continues at step 544 where the processing module
determines whether the set of DST execution units have all
beenupgraded. The determining may be based on one or more
of'accessing a list, receiving a message, and initiating a query.
The method ends at step 546 when the set of DST execution
units have all been upgraded. The method loops back to step
536 when the set of DST execution units have not all been
upgraded.

FIG. 46 is a flowchart illustrating an example of authenti-
cating a client of a client and server combination. For
example, a user device of a distributed storage and task net-
work (DSTN) authenticates with a distributed storage and
task (DST) processing unit to gain access to data stored in a
DSTN module. The method begins at step 548 where the
client generates a certificate request. The certificate request
indicates request of at least one of a certificate chain and a
public key of the server. The method continues at step 550
where the client sends the certificate request to the server. The
method continues at step 552 where the server generates a
certificate response that includes a certificate chain and a
server public key. The generating includes receiving the cer-
tificate request.

The method continues at step 554 where the client verifies
the certificate chain and the server public key utilizing public
key infrastructure techniques (e.g., compare a calculated hash
over content of the certificate chain to a decrypted signature
utilizing the server public key) and/or a direct match of the
key (e.g., matching a public key of the certificate chain and
the server public key). When verified, the method continues at

40

45

55

60

50

step 556 where the client generates an authentication header
that includes client credentials. The client credentials
includes at least one of a username, a password, a verification
value (e.g., a deterministic function of part of a message) and
a client public key. The deterministic function includes at
least one of a hashing function, a hash-based message authen-
tication code (HMAC) function, a digital signature function,
acyclic redundancy check (CRC) function, a checksum func-
tion, and a masked generating function (MGF).

The method continues at step 558 where the client encrypts
the authentication header utilizing the server public key to
produce an encrypted authentication header. The method con-
tinues at step 560 where the client sends the encrypted authen-
tication header and an access request to the server. The access
request includes a DSTN access request to gain access to the
DSTN module (e.g., a read request, a write request, etc.). The
method continues at step 562 where the server decrypts the
encrypted authentication header utilizing a server private key
of'a public/private key pair that includes the server public key
and the server private key. The method continues at step 564
where the server verifies the authentication header. The
authentication includes at least one of verifying the client
credentials (e.g., matching the user name and password to a
list) and verifying the verification value (e.g., a received hash
value compared to a calculated hash value of the part of the
message). When verified, the method continues at step 566
where the server processes the access request to enable access
by the client to the DSTN module.

FIG. 47A is a schematic block diagram of another embodi-
ment of a distributed storage and task network module that
includes a first vault 1 of storage and a second vault 2 of
storage. Each vault includes a plurality of distributed storage
and task (DST) execution units 36. The vaults may share one
or more common DST execution units 36. For example, vault
1 includes five DST execution units 36, one of which is a
common DST execution unit 36 of a set of five DST execution
is 36 that are included in vault 2 when a pillar width is 5.

From time to time one or more of the DST execution units
36 may be associated with degraded performance and/or fail.
System impact is greater from a failure or degradation of a
common DST execution unit 36 as compared to a non-com-
mon DST execution unit 36 with impact to two or more vaults.
A failure abatement approach may be utilized to address
degradation and failure of the one or more DST execution
units. The failure abatement approach includes migrating
slices from a degraded DST execution unit 36 to a non-
degraded DST execution unit 36 and rebuilding slices asso-
ciated with a failed DST execution unit 36 for at least tempo-
rary storage in a non-failed DST execution unit 36.

Determination of the failure abatement approach may be
based on one or more of detection of the degraded DST
execution unit 36, detection of a failed DST execution unit 36,
how many vaults are associated with a degraded or failed DST
execution unit 36, a decode threshold number associated with
each vault, and how many non-failed DST execution units 36
are available per vault. For example, slices are migrated from
acommon degraded DST executionunit 36 to a non-degraded
DST execution unit 36 when the common degraded DST
execution unit 36 is associated with a vault where a number of
available DST execution units 36 is less than a low threshold
number (e.g., a decode threshold number). As another
example, slices associated with a common failed DST execu-
tion unit 36 are rebuilt and stored to a non-failed DST execu-
tion unit 36 when the common failed DST execution unit 36
is associated with the vault where the number of available
DST execution units 36 is less than the low threshold number.

US 9,292,212 B2

51
A method of operation of the system is discussed in greater
detail with reference to F1G. 47B.

FIG. 47B is a flowchart illustrating an example of protect-
ing data. The method begins at step 568 where a processing
module (e.g., of a distributed storage and task (DST) client
module) detects a failing DST execution unit. The detecting
includes one or more of receiving an error message, initiating
a query, performing a test, and detecting one or more slice
errors associated with the failing DST execution unit. The
method continues at step 570 where the processing module
identifies one or more vaults associated with the failing DST
execution unit. The identifying includes at least one of receiv-
ing identities, performing a lookup (e.g., a registry), and
initiating a query. For each of the one or more vaults, the
method continues at step 572 where the processing module
identifies other DST execution units associated with a storage
set of DST execution units of the vault. The identifying
includes at least one of receiving identifiers, performing a
lookup, and initiating a query. The method continues at step
574 where the processing module determines status of the
other DST execution units. The determining includes at least
one of receiving status information, performing a lookup, and
initiating a query.

For each of the one or more vaults, the method continues at
step 576 where the processing module determines whether a
number of DST execution units compares unfavorably to a
low threshold. The low threshold may be based on a decode
threshold associated with the vault. For example, the low
threshold may be calculated by adding one to the decode
threshold. The processing module determines that the com-
parison is unfavorable when the number of DST execution
units is less than the low threshold. The method branches to
step 580 when the comparison is unfavorable. The method
continues to step 578 when the comparison is favorable. The
method continues at step 578 where the processing module
indicates the failing DST execution unit. The indicating may
include one or more of generating and sending an error mes-
sage, initiating rebuilding, and sending a request to replace
the failing DST execution unit. The method continues at step
580 where the processing module facilitates activation of at
least one replacement DST execution unit to include storing
data associated with the failing DST execution unit when the
number of DST execution units compares unfavorably with
the low threshold. The facilitating includes at least one of
migrating slices from the failing DST execution unit to the at
least one replacement DST execution unit and rebuilding
slices of the failing DST execution unit for storage in the at
least one replacement DST execution unit.

FIG. 48A is a schematic block diagram illustrating another
embodiment of a distributed storage and task execution unit
582 that includes a controller 584 and a memory 586. The
memory 586 includes slice memory 588 and temporary slice
memory 590. The controller 584 functions to receive slice
access requests 592 with regards to slices 596 stored in the
memory 586. The controller 584 further functions to generate
slice access responses 594 with regards to the slice access
requests 592. The slice access request 592 may include one or
more of a slice name, a request type, and a slice. The slice
access response 594 may include one or more of a slice name,
a response type, and a slice.

A slice storage lifecycle includes storing a slice, reading
the slice, and deleting the slice when it is believed the slice is
no longer required. From time to time it may be desired to
read a slice subsequent to deletion of the slice when the slice
was deleted prematurely. The DST execution unit 582 sup-
ports a reversibility approach to support a level of slice avail-
ability when the slice has been deleted. The reversibility

10

15

20

25

30

35

40

45

50

55

60

65

52

approach may be accomplished in a variety of ways. In a first
way, the slice is stored in the slice memory 588 and a flag is set
to indicate a deletion request when a delete slice request is
received (e.g., but the slice is not physically deleted from the
slice memory 588). The slice is retrieved from the slice
memory 588 and utilized to form a slice access response 594
when a slice read request is received subsequent to the delete
slice request. The slice may be deleted from the slice memory
588 upon an expiration time period after receiving the delete
slice request.

In a second way, the slice is moved from the slice memory
588 to the temporary slice memory 590 when the delete slice
request is received. The slice is retrieved from the temporary
slice memory 590 and utilized to form the slice access
response 594 when the slice read request is received subse-
quent to the delete slice request. The slice may be deleted
from the temporary slice memory 590 upon the expiration of
the time period after receiving the delete slice request. A
method of operation of the DST execution unitis discussed in
greater detail with reference to FIG. 48B.

FIG. 48B is a flowchart illustrating an example of process-
ing a slice access request. The method begins at step 598
where a processing module (e.g., of a distributed storage and
task (DST) execution unit) receives a slice access request. The
slice access request includes one or more of a requesting
entity identifier (ID), a request type, a slice, a revision num-
ber, a priority indicator, and a certainty level indicator. The
method continues at step 600 where the processing module
determines whether the slice access request may result in
destructive modification of a slice stored in the slice memory.
The determining includes comparing the request type to a list
of request types associated with the destructive modification
of'the slice. The list of request types includes one or more of
a delete type, an overwrite type, a modification type, and a
new revision type.

When the slice access request will result in destructive
modification of the slice stored in the slice memory, the
method continues at step 602 where the processing module
determines whether to facilitate reversibility of the slice
access request. The determining may be based on one or more
of the request type, the requesting entity ID, the priority
indicator, the certainty level indicator, and a memory avail-
ability level indicator. For example, the processing module
determines to facilitate reversibility of the slice access request
when the certainty indicator indicates a low level of certainty
that subsequent brief read slice requests will be issued to the
DST execution unit with regards to the slice. As another
example, the processing module determines not to facilitate
reversibility of the slice access request when the memory
availability level indicator indicates that less than a memory
level threshold amount of available memory is available.

The method branches to step 606 when the processing
module determines to facilitate reversibility. The method con-
tinues to step 604 when the processing module determines not
to facilitate reversibility. The method continues at step 604
where the processing module facilitates execution of a corre-
sponding slice access request operation (e.g., resulting inde-
structible edification of the slice). The method continues at
step 606 where the processing module facilitates moving the
slice from the slice memory to a temporary slice memory
when the processing module determines to facilitate revers-
ibility. The facilitating includes one or more of retrieving the
slice from the slice memory, storing the slice in the temporary
slice memory, obtaining metadata associated with the slice
(e.g., slicing, revision number, timestamp, etc.), and storing
the metadata in the temporary slice memory.

US 9,292,212 B2

53

FIG. 49 is a flowchart illustrating an example of verifying
slice integrity. The method begins at step 608 where a pro-
cessing module (e.g., of a distributed storage and task (DST)
execution unit) retrieves a slice from a slice memory to pro-
duce a retrieved slice. The retrieving may include selecting
the slice based on atleast one of a next slice of a test sequence,
an error message, and a request. The method continues at step
610 where the processing module retrieves a slice integrity
value associated with the slice from the slice memory to
produce a retrieved slice integrity value. The slice integrity
value was previously generated and stored in the slice
memory in association with the storing of the slice. The
generating of the slice integrity value includes performing a
deterministic function on the slice to produce the slice integ-
rity value.

The method continues at step 612 where the processing
module generates a second slice integrity value based on the
retrieved slice. The method continues at step 614 where the
processing module determines whether the second slice
integrity value compares favorably to the retrieved slice integ-
rity value. For example, the processing module determines
that the comparison is favorable when the second slice integ-
rity value is substantially the same as the retrieved slice integ-
rity value. The method branches to step 616 when the com-
parison is unfavorable. The method loops back to step 608
when the comparisons favorable.

The method continues at step 616 where the processing
module facilitates rebuilding of the slice to produce a rebuilt
slice when the comparison of the second slice integrity value
to the retrieved slice integrity value is unfavorable. The facili-
tating includes sending a rebuild request includes a slice name
of the slice and directly rebuilding the slice. The method
continues at step 618 where the processing module stores the
slice (e.g., error slice) in a temporary slice memory. The
storing may include generating a timestamp and storing the
timestamp in the temporary slice memory. The slice may be
retrieved from the temporary slice memory for further inspec-
tion to determine a root cause of an error. The method con-
tinues at step 620 where the processing module stores the
rebuilt slice in the slice memory (e.g. to replace the slice of the
slice error).

FIG. 50A is a schematic block diagram of another embodi-
ment of a distributed computing system that includes a dis-
tributed storage and task (DST) client module 34, and a vault
622. The vault 622 includes a storage set of a pillar width
number of DST execution units 36 utilized to store a set of
encoded data slices 1-5. For example, the set of DST execu-
tion units 36 includes five DST execution units to store slices
1-5 of the set of encoded data slices when the pillar width
number is five. The DST client module 34 functions to encode
data 624 into the set of encoded data slices producing slices
1-5. The DST client module 34 further functions to generate
an integrity value for each slice of the set of encoded data
slices to produce a set of integrity values as an integrity list
626. For each DST execution unit 36 of the set of DST
execution units 36, the DST client module 34 outputs a cor-
responding slice of the set of encoded data slices and the
integrity list 626 to the DST execution unit 36. For example,
the DST client module 34 sends slice 2 and the integrity list
626 to a second DST execution unit 36 of the set of DST
execution units 36.

A rebuilding DST execution unit 36 of the set of DST
execution units 36 may rebuild a slice associated with a stor-
age error to produce a rebuilt slice 628 when the storage error
is associated with the slice. Any DST execution unit 36 may
assume a rebuilding DST execution unit 36 role to rebuild a
slice for any of the DST execution units 36 of the set of DST

10

15

20

25

30

35

40

45

50

55

60

65

54

execution units 36. Alternatively, a rebuilding server may
perform the rebuilding DST execution unit 36 role. The
rebuilding DST execution unit 36 sends the rebuilt slice 628
to a receiving DST execution unit 36 associated with storage
of'the slice of the storage error. The receiving DST execution
unit 36 validates the rebuilt slice 628 prior to storing the
rebuilt slice 628 in a memory of the receiving DST execution
unit 36. The validating may be accomplished in a variety of
ways. In a first way, the receiving DST execution unit 36
establishes a level of trust with the rebuilding DST execution
unit 36 and stores the rebuilt slice in the memory of the
receiving DST execution unit 36 when the level of trust is
favorable. In a second way, the receiving DST execution unit
36 calculates an integrity value of the rebuilt slice and com-
pares the calculated integrity value to a retrieved integrity
value of the integrity list 626 retrieved from the memory of
the receiving DST execution unit 36. The receiving DST
execution unit 36 stores rebuilt slice in the memory when the
comparisons favorable (e.g., substantially the same).

Inathird way, the receiving DST execution unit 36 receives
copies of the integrity list 626 from a portion (e.g., majority)
of'the set of DST execution units 36 and produces a majority
view of the integrity value of the slice (e.g., a common integ-
rity value of a majority). Next, the receiving DST execution
unit 36 compares the majority view of the integrity value to
the calculated integrity value and stores the rebuilt slice 628 in
the memory when the comparison is favorable.

FIG. 50B is a schematic block diagram of another embodi-
ment of a dispersed storage network (DSN) system that
includes a computing device 630 and a dispersed storage
network (DSN) 632. The DSN 632 includes one or more
storage device sets 634. The DSN 632 may be implemented
utilizing one or more of a distributed storage and task network
(DSTN), a DSTN module, a dispersed storage network
memory, a plurality of distributed storage and task (DST)
execution units, and a plurality of dispersed storage (DS)
units. Each of the one or more storage device sets 634
includes a set of storage devices 636. Each storage device 636
may be implemented utilizing at least one of a DS unit, a
storage node, a storage server, a storage unit, a storage mod-
ule, a memory device, amemory, a DST execution unit, a user
device, a DST processing unit, and a DST processing module.
The computing device 630 may be implemented utilizing at
least one of a server, a storage unit, a storage device 636, a DS
unit, a storage server, a storage module, a DS processing unit,
a DST execution unit, a user device, a DST processing unit, a
DS processing module, and a DST processing module. For
example, the computing device 630 is implemented as a first
storage device 636 of the storage device set 634. The com-
puting device 630 includes a dispersed storage (DS) module
638 and a memory 640. The memory 640 may be imple-
mented utilizing one or more of a solid-state memory, an
optical disk memory, and a magnetic disk memory. The DS
module 638 includes a slice module 642, a comparative integ-
rity module 644, and a storage module 646.

The system functions to obtain an encoded data slice 648
and an integrity value 650 of the encoded data slice, generate
a comparative integrity value 654 based on integrity informa-
tion 652, and store the encoded data slice 648 when integrity
of'the encoded data slice is favorably verified. A data segment
is encoded using a dispersed storage error coding function to
produce a set of encoded data slices that includes the encoded
data slice 648, where the set of encoded data slices has an
associated set of integrity values. The integrity information
652 is generated from the set of integrity values. For example,
the integrity information 652 includes each integrity value of
the set of integrity values. An integrity value of the set of

US 9,292,212 B2

55

integrity values may be generated by performing a determin-
istic function on an associated encoded data slice of the set of
encoded data slices. The deterministic function includes at
least one of a hashing function, a cyclic redundancy code
function, a hash based message authentication code, a digital
signature function, a mask generating function, and a sponge
function. The set of encoded data slices and the integrity
information 652 may be stored in the set of storage devices
636 of the storage device set 634. For example, a first slice of
the set of encoded data slices and the integrity information
652 is stored in a first storage device 636, a second slice of the
set of encoded data slices and the integrity information 652 is
stored in a second storage device 636 etc.

With regards to the obtaining of the encoded data slice 648
and the integrity value 650 of the encoded data slice, the slice
module 642 performs a series of obtaining steps. In a first
obtaining step, the slice module 642 receives, from a request-
ing entity (e.g., from a rebuilding storage device 636, from a
DS processing module), the encoded data slice 648 of the set
of encoded data slices. Alternatively, the slice module 642
receives the encoded data slice 648 as a function of a rebuild-
ing process, where the encoded data slice 648 corresponds to
arebuilt encoded data slice of a corrupt encoded data slice and
the integrity information 652 corresponds to the set of
encoded data slices that included the corrupt encoded data
slice. In a second obtaining step, the slice module 642 gener-
ates an integrity value for the encoded data slice 648. For
example, the slice module 642 performs the deterministic
function on the encoded data slice 648 to generate the integ-
rity value 650.

With regards to the generating the comparative integrity
value 654, the comparative integrity module 644 obtains at
least a portion of the integrity information 652 from another
storage device 636 and generates the comparative integrity
value 654 for the encoded data slice based on the at least a
portion of the integrity information 652. The comparative
integrity module 644 may generate the comparative integrity
value 654 based on one or more obtained integrity values
corresponding to the encoded data slice 648. For example, the
comparative integrity module 644 establishes the compara-
tive integrity value 654 based on a majority of the one or more
obtained integrity values that are substantially the same. The
comparative integrity module 644 generates the comparative
integrity value 654 by a variety of approaches. In a first
approach, the comparative integrity module 644 obtains, via
arequest, a retrieved integrity value of the encoded data slice
from the other storage device 636, where the other storage
device 636 produced the retrieved integrity value from the
integrity information 652 and generates the comparative
integrity value 654 by equating the comparative integrity
value 654 to the retrieved integrity value. In a second
approach, the comparative integrity module 644 obtains, via
arequest, the integrity information 652 from the other storage
device 636, produces the retrieved integrity value from the
integrity information 652, and generates the comparative
integrity value 654 by equating the comparative integrity
value 654 to the retrieved integrity value. In a third approach,
the comparative integrity module 644 obtains a second at
least a portion of the integrity information 652 from a second
other storage device 636 and generates the comparative integ-
rity value 654 for the encoded data slice based on the at least
a portion of the integrity information 652 and the second at
least a portion of the integrity information 652. For example,
the comparative integrity module 644 generates the compara-
tive integrity value 654 as a common obtained integrity value
associated with the encoded data slice extracted from the at

20

40

45

56

least a portion of the integrity information 652 and the second
at least a portion of the integrity information 652.

With regards to the storing the encoded data slice 648, the
storage module 646 facilitates storage of the encoded data
slice in the memory 640 of the computing device 630 (e.g.,
storage device when the computing device 630 is imple-
mented as the first storage device 636) when the integrity
value 650 compares favorably to the comparative integrity
value 654 (e.g., substantially the same). The storage module
646 may generate an error message 656 when the integrity
value 650 compares unfavorably to the comparative integrity
value 654. The error message 656 may include an identifier
for the encoded data slice and an error status indicator.

FIG.50C is a flowchart illustrating an example of verifying
a slice. The method begins at step 660 where a processing
module (e.g., of a storage device of a dispersed storage net-
work (DSN) receives, from a requesting entity (e.g., a rebuild-
ing storage device, a dispersed storage processing unit), an
encoded data slice of a set of encoded data slices, where a data
segment is encoded using a dispersed storage error coding
function to produce the set of encoded data slices. The set of
encoded data slices has an associated set of integrity values
such that integrity information is generated from the set of
integrity values. The receiving includes the processing mod-
ule receiving the encoded data slice as a function of a rebuild-
ing process, where the encoded data slice corresponds to a
rebuilt encoded data slice of a corrupt encoded data slice and
the integrity information corresponds to the set of encoded
data slices that included the corrupt encoded data slice.

The method continues at step 662 where the processing
module generates an integrity value for the encoded data
slice. For example, the processing module performs a deter-
ministic function on the encoded data slice to produce the
integrity value. The method continues at step 664 where the
processing module obtains at least a portion of the integrity
information from another storage device by a variety of
approaches. A first approach includes obtaining, via a request,
a retrieved integrity value of the encoded data slice from the
other storage device, where the other storage device produced
the retrieved integrity value from the integrity information. A
second approach includes obtaining, via a request, the integ-
rity information from the other storage device and producing
the retrieved integrity value from the integrity information. A
third approach includes obtaining a second at least a portion
of the integrity information from a second other storage
device. Alternatively, the processing module may obtain
integrity information from each of a set of storage devices that
includes the storage device.

The method continues at step 666 where the processing
module generates a comparative integrity value for the
encoded data slice based on the at least a portion of the
integrity information by a variety of approaches. A first
approach includes generating the comparative integrity value
by equating the comparative integrity value to the retrieved
integrity value when the retrieved integrity value is retrieved
from the other storage device. A second approach includes
generating the comparative integrity value by equating the
comparative integrity value to the retrieved integrity value
when the retrieved integrity value is produced from the integ-
rity information from the other storage device. A third
approach includes generating the comparative integrity value
for the encoded data slice based on the at least a portion of the
integrity information and the second at least a portion of the
integrity information when the second at least a portion of the
integrity information is obtained from the second other stor-
age device. A fourth approach includes generating the com-

US 9,292,212 B2

57

parative integrity value for the encoded data slice based on
integrity information from each storage device of the set of
storage devices.

The method continues at step 668 where the processing
module determines whether the integrity value compares
favorably to the comparative integrity value. The processing
module indicates that the integrity value compares favorably
to the comparative integrity value when the integrity value is
substantially the same as the comparative integrity value. The
method branches to step 672 when the comparison is favor-
able. The method continues to step 670 when the comparison
is unfavorable. The method continues at step 670 where the
processing module generates an error message when the
integrity value compares unfavorably to the comparative
integrity value. The method continues at step 672 where the
processing module facilitates storage of the encoded data
slice in memory of the storage device when the integrity value
compares favorably to the comparative integrity value

FIG. 50D is a schematic block diagram of another embodi-
ment of a dispersed storage network (DSN) system that
includes a computing device 680 and a dispersed storage
network (DSN) 632. The DSN 632 includes one or more
storage device sets 634. The DSN 632 may be implemented
utilizing one or more ofa distributed storage and task network
(DSTN), a DSTN module, a dispersed storage network
memory, a plurality of distributed storage and task (DST)
execution units, and a plurality of dispersed storage (DS)
units. Each of the one or more storage device sets 634
includes a set of storage devices 636. Each storage device 636
may be implemented utilizing at least one of a DS unit, a
storage node, a storage server, a storage unit, a storage mod-
ule, a memory device, a memory, a DST execution unit, a user
device, a DST processing unit, and a DST processing module.
The computing device 680 may be implemented utilizing at
least one of a server, a storage unit, a storage device 636, a DS
unit, a storage server, a storage module, a DS processing unit,
a DST execution unit, a user device, a DST processing unit, a
DS processing module, and a DST processing module. For
example, the computing device 680 is implemented as a first
storage device 636 of the storage device set 634. The com-
puting device 680 includes a dispersed storage (DS) module
682 and a memory 684. The memory 684 may be imple-
mented utilizing one or more of a solid-state memory, an
optical disk memory, and a magnetic disk memory. The DS
module 682 includes a receive module 686, and integrity copy
module 688, and a validate module 690.

The system functions to obtain integrity information 652
and an encoded data slice 648, obtain a copy of the integrity
information 692, and store the encoded data slice 648 when
the integrity information 652 and the copy of the integrity
information 692 compare favorably. A data segment is
encoded using a dispersed storage error coding function to
produce a set of encoded data slices that includes the encoded
data slice 648, where the set of encoded data slices has an
associated set of integrity values. The integrity information
652 is generated from the set of integrity values. For example,
the integrity information 652 includes each integrity value of
the set of integrity values. An integrity value of the set of
integrity values may be generated by performing a determin-
istic function on an associated encoded data slice of the set of
encoded data slices. The set of encoded data slices and the
integrity information 652 may be stored in the set of storage
devices 636 of the storage device set 634. For example, a first
slice of the set of encoded data slices and the integrity infor-
mation 652 is stored in a first storage device 636, a second
slice of the set of encoded data slices and the integrity infor-
mation 652 is stored in a second storage device 636 etc.

10

15

20

25

30

35

40

45

50

55

60

65

58

Subsequent to storage, the integrity information 652 may be
available for retrieval from a storage device 636 as a copy of
the integrity information 692.

With regards to the obtaining the integrity information 652
and the encoded data slice 648, the receive module 686
receives, from a requesting entity (e.g.,a DS processing mod-
ule, a rebuilding storage device 636), the integrity informa-
tion 652 and the encoded data slice 648. The receiving
includes the receive module 686 receiving the encoded data
slice 648 as a function of a rebuilding process, where the
encoded data slice 648 corresponds to a rebuilt encoded data
slice of a corrupt encoded data slice and the integrity infor-
mation 652 corresponds to the set of encoded data slices that
included the corrupt encoded data slice. Alternatively, or in
addition to, the receive module 686 may generate an integrity
value 650 for the encoded data slice 648. For example, the
receive module 686 performs the deterministic function on
the encoded data slice 648 to generate the integrity value 650.

With regards to the obtaining the copy of the integrity
information 692, the integrity copy module 688 obtains at
least a portion of the copy of the integrity information 692
from another storage device 636. For example, the integrity
copy module 688 receives the at least a portion of the copy of
the integrity information 692 from a second storage device
636 of the storage device set 634. Alternatively, the integrity
copy module 688 obtains, via a request, a retrieved integrity
value of the encoded data slice from the other storage device
636, where the other storage device 636 produced the
retrieved integrity value from the copy of the integrity infor-
mation 692. Alternatively, the integrity copy module 688
obtains the copy of the integrity information 692 from the
other storage device 636 (e.g., all portions).

With regards to the storing the encoded data slice 648, the
validate module 690 compares the at least a portion of the
copy of the integrity information 692 with a corresponding at
least a portion of the received integrity information 652. For
example, the validate module 690 compares a subject integ-
rity value of the at least a portion of the copy of the integrity
information 692 that corresponds to the encoded data slice
648 to a subject integrity value of the at least a portion of the
received integrity information 652 that corresponds to the
encoded data slice 648. Alternatively, the validate module
690 compares the integrity value 650 as the corresponding at
least a portion of the received integrity information 652 with
the retrieved integrity value as the at least a portion of the copy
of'the integrity information 692 when the receive module 686
generates the integrity value 650 and the integrity copy mod-
ule 688 obtains the retrieved integrity value of the encoded
data slice from the other storage device 636. Alternatively, the
validate module 690 compares the copy of the integrity infor-
mation 692 with the received integrity information 652 when
the integrity copy module 688 obtains the copy of the integrity
information 692 from the other storage device 636. The vali-
date module 690 facilitates storage of the encoded data slice
648 in the memory 684 of the storage device 636 when the
comparison of the atleast a portion of the copy of the integrity
information 692 with the corresponding at least a portion of
the received integrity information 652 is favorable (e.g., sub-
stantially the same).

FIG. 50E is a flowchart illustrating another example of
verifying a slice. The method begins at step 700 where a
processing module (e.g., of a storage device of a dispersed
storage network (DSN) receives, from a requesting entity
(e.g., adispersed storage processing unit, a rebuilding storage
device), integrity information and an encoded data slice of a
set of encoded data slices, where a data segment is encoded
using a dispersed storage error coding function to produce the

US 9,292,212 B2

59

set of encoded data slices that includes the encoded data slice.
The integrity information is generated from a set of integrity
values, where the set of integrity values are associated with
the set of encoded data slices. The receiving may include
receiving the encoded data slice as a function of a rebuilding
process, wherein the encoded data slice corresponds to a
rebuilt encoded data slice of a corrupt encoded data slice and
the integrity information corresponds to the set of encoded
data slices that included the corrupt encoded data slice. The
receiving may further include the processing module gener-
ating an integrity value for the encoded data slice. For
example, the processing module performs a deterministic
function on the encoded data slice to produce the integrity
value.

The method continues at step 702 where the processing
module obtains at least a portion of a copy of the integrity
information from another storage device. The obtaining
includes a variety of obtaining approaches. A first obtaining
approach includes obtaining, via a request, a retrieved integ-
rity value of the encoded data slice from the other storage
device, where the other storage device produced the retrieved
integrity value from the copy of the integrity information. A
second obtaining approach includes obtaining, by the pro-
cessing module, the copy of the integrity information from
the other storage device.

The method continues at step 704 where the processing
module compares the at least a portion of the copy of the
integrity information with a corresponding at least a portion
of'the received integrity information. The comparing includes
a variety of comparing approaches. A first comparing
approach includes comparing the integrity value as the cor-
responding at least a portion of the received integrity infor-
mation with the retrieved integrity value as the at least a
portion of the copy of the integrity information when the
processing module generates the integrity value and obtains
the retrieved integrity value. A second comparing approach
includes comparing the copy of the integrity information with
the received integrity information when the processing mod-
ule obtains the copy of the integrity information. The method
continues at step 706 where the processing module facilitate
storage of the encoded data slice in memory of the storage
device when the comparison is favorable.

FIG. 51A is a schematic block diagram of another embodi-
ment of a distributed computing system that includes a dis-
tributed storage and task (DST) client module 34 and a dis-
tributed storage and task network (DSTN) module 22.
Alternatively, the DST client module 34 is implemented as a
dispersed storage processing module and the DSTN module
22 is implemented as a dispersed storage network memory.
The DST client module 34 receives data 710 for storage in the
DSTN module 22. The DST client module 34 partitions the
data 710 into at least two data partitions. For each data parti-
tion of the at least two data partitions, the DST client module
34 encodes the data partition to produce a plurality of sets of
encoded data slices. The DST client module 34 outputs each
plurality of sets of encoded data slices to the DSTN module
22 for storage therein. For example, the DST client module 34
generates and sends a first plurality of sets of encoded data
slices 712, corresponding to a first data partition, to the DSTN
module 22 and generates and sends a second plurality of sets
of encoded data slices 714, corresponding to a second data
partition, to the DSTN module 22 when two data partitions
are included in the at least two data partitions.

The DST client module 34 updates a directory to associate
the data 710 with storage of the two or more plurality of sets
of' encoded data slices. For example, the DST client module
34 generates a segment allocation table (SAT) vault source

10

15

20

25

30

35

40

45

50

55

60

65

60

name for each data partition of the least two data partitions to
produce at least two SAT vault source names. The DST client
module 34 generates a SAT vault source name for the data
710. The DST client module 34 updates the directory to
include the at least two SAT vault source names and for each
SAT vault source name a corresponding object descriptor of a
data partition associated with the corresponding plurality of
sets of encoded data slices. The DST client module 34 updates
the directory to include the SAT vault source name for the
data 710. Such a directory is discussed in greater detail with
reference to FIG. 51B.

For each SAT vault source name associated with the at least
two data partitions, the DST client module 34 generates a
SAT. The DST client module 34 generates a SAT for the data
710 that includes a SAT corresponding to each of the at least
two data partitions. Such a set of SATs is discussed in greater
detail with reference to FIG. 51C.

FIG. 51B is a diagram illustrating an example of a directory
716 that includes an entry for data storage to a distributed
storage and task network (DSTN) module and an entry for
each data partition of the data when two or more data parti-
tions are utilized to store the data in the DSTN module. Each
entry includes an object entry of an object field 718 and a
segment allocation table (SAT) vault source name entry of a
SAT vault source name field 720. The object entry includes a
descriptor of the data or each data protection. The SAT vault
source name entry includes a vault source name generated to
store a corresponding SAT in the DSTN module. For
example, data is partitioned into two data partitions and rep-
resented as data partition 1 and data partition 2. A SAT cor-
responding to data partition 1 is stored in a SAT vault source
name of 1A6B, a SAT corresponding to data partition 2 is
stored in a SAT vault source name of 48D2, and a SAT
corresponding to the data is stored in a SAT vault source name
of 34FA.

FIG. 51C is a set of diagrams illustrating examples of
segment allocation tables (SATs) corresponding to storage of
data in a distributed storage and task network (DSTN) module
when the data is partitioned into two or more data partitions.
Storage of a first partition of data is associated with a SAT
stored at vault source name 1A6B and storage of a second
partition of data is associated with a SAT stored at vault
source name 48D2. Another SAT is stored at vault source
name 34FA that represents storage of the data as the two data
partitions.

Each SAT includes a start segment vault source name entry
of a start segment vault source name field 722, a segment size
entry of a segment size field 724, and a total length entry of a
total length field 726. The start segment vault source name
entry indicates a vault source name associated with storage of
a set of encoded data slices of a first segment of one or more
segments associated with the SAT. The segment size entry
indicates a number of bytes of each segment of the one or
more segments. The total length entry indicates a number of
bytes of all of the one or more segments. For example, the first
data partition is stored as one or more segments starting with
a first segment stored at a vault source name of AAO1 where
each segment is 100 bytes and a total number of bytes of the
first data partition is 500 bytes. As another example, the
second data partition is stored as one of more segments start-
ing with a first segment stored at a vault source name of BB0S
where each segment is 100 bytes and a total number of bytes
of the second data partition is 600 bytes.

The SAT associated with the data indicates the SAT infor-
mation of the two or more data partitions as two or more
regions of the SAT of the data. The first region includes the
start segment vault source name of AAO1 corresponding to

US 9,292,212 B2

61

the first data partition. The second region includes the start
segment all source name of BBOS corresponding to the sec-
ond data partition.

FIG. 51D is a flowchart illustrating an example of parallel
storage of data in a dispersed storage network. The method
begins at step 728 where a processing module (e.g., of a
distributed storage and task (DST) client module) partitions
data for storage into two or more data partitions. The parti-
tioning may be based on a partitioning scheme lookup,
receiving the partitioning scheme, and an attribute of the data
(e.g., size). For each partition, the method continues at step
730 where the processing module encodes the partition uti-
lizing a dispersed storage error coding function to produce a
plurality of encoded data slices. The encoding may be accom-
plished in a substantially parallel method such that while a
first partition is being encoded a second partition is simulta-
neously being encoded by another encoding resource poten-
tially resulting in a system performance improvement.

For each partition, the method continues at step 732 where
the processing module facilitates generating and storing a
segment allocation table (SAT) at a corresponding SAT vault
source name. The generating includes generating an entry for
each field including a start segment vault source name field, a
number of bytes per second field, and a number of total bytes
for the partition field. For each partition, the method contin-
ues at step 734 where the processing module facilitates stor-
ing a corresponding plurality of encoded data slices in a
distributed storage and task network (DSTN) module in
accordance with a corresponding SAT (e.g., storing starting
with the start segment vault source name). The facilitating
includes generating write slice requests that includes the plu-
rality of sets of encoded data slices and sending the write slice
requests to the DSTN module.

For each partition, the method continues at step 736 where
the processing module facilitates updating a directory to
include a corresponding SAT vault source name. For
example, a corresponding data partition identifier is associ-
ated with the SAT vault source name of the data partition. The
method continues at step 740 where the processing module
facilitates generating and storing an SAT for the data that
includes SAT information for the two or more data partition’s
and a corresponding SAT vault source name for the data. For
example, the processing module combines information from
the two or more SATs in the SAT for the data. The method
continues at step 742 where the processing module updates
the directory to include the SAT vault source name of the data.
The updating includes establishing an association between
the SAT vault source name of the data and a data identifier of
the data.

FIG. 52A is a schematic block diagram of another embodi-
ment of a distributed storage and task (DST) execution unit 36
that includes a controller 744 and a memory 746. The memory
may include a plurality of containers 1-N. Each container of
the plurality of containers 1-N may be implemented utilizing
one or more memory devices. Each container of the plurality
of containers 1-N is operable to store slices 748 received by
the controller 744. The controller 744 selects a container of
the plurality of containers 1-N to produce a selected container
to store a slice 748 based on a slice name 750 associated with
the slice 748. Each container of the plurality of containers 1-N
may be mapped to an address range that includes the slice
name 750. For example, the controller 744 selects container 2
when a slice name 750 maps to a second range of slice names.
As another example, the controller 744 selects container 150
when the slice name 750 maps to a 150th range of slice names.
The N address ranges may be defined by n most significant
bits of the slice name 750 in accordance with an expression

10

15

20

25

30

35

40

45

50

55

60

65

62
of: N=2". The slice name structure is discussed in greater
detail with reference to FIG. 52B.

FIG. 52B is a diagram illustrating an example of a slice
name structure 752 that includes a container identifier (ID)
field 754, a vault ID field 756, an object number field 758, and
a segment number field 760. The container ID field 754 is
utilized for a container ID entry signifying a container iden-
tifier of a plurality of containers of a memory. The vault ID
field 756 is utilized for a vault ID entry, where a vault corre-
sponding to the vault ID is associated with a requesting entity
accessing a slice associated with the slice name. The object
number field 758 is utilized for any object number entry
associated with data associated with the slice corresponding
to the slice name. The object number entry may be generated
in a variety of ways. In a first way, the object number is
generated as a random number. In a second way, a determin-
istic function is performed on a data ID of the data to produce
the object number. A directory and/or index is utilized to
associate the data ID and the object number (e.g., a portion of
the slice name that includes the vault ID and the number may
be stored as a source name). The segment number field 760 is
utilized for a segment number entry associated with the slice
name to denote one or more data segments associated with the
data.

A table may be generated to store associations between
container IDs and storage locations of each of the containers
in the memory. For example, an entry of the table includes a
container ID and a corresponding memory offset within the
memory associated with the container of the container ID. A
slice may be stored at a container offset within the container.
A relationship between a slice and the container offset within
the container may be stored in a container directory. The
container directory structure is discussed in greater detail
with reference to FIG. 52C.

FIG. 52C is a diagram illustrating an example of a con-
tainer directory 762 that includes a plurality of entries, where
each entry of the plurality of entries is associated with a slice
stored in a container of a plurality of containers within a
memory. Each entry of the plurality of entries includes a slice
name entry of a slice name field 752, a slice size entry of a
slice size field 764, and a container offset entry of a container
offset field 766. The slice name entry corresponds to a slice
name of an associate slice stored in the container. The slice
size entry corresponds to a size (e.g., number of bytes) of the
slice. The container offset entry corresponds to an offset
within the container where the slice is stored (e.g., the first
byte starts at an offset location within a container). For
example, a slice of slice name 43 DB is 10,000 bytes in size
and is stored at an offset of 02 DB within a container associ-
ated with the container directory. As another example, a slice
of slice name 59D5 is 4,000 bytes in size and is stored at an
offset of 4390 within the container. Container offsets may be
determined in a variety of ways. In a first way, an available
location within the container that includes enough space to
store the slice is associated with the slice. In a second way, a
deterministic function is performed on the slice name to pro-
vide an index into the container directory when the container
is organized as a plurality of sections evenly distributed and
utilizing a contiguous plurality of container offsets.

FIG. 52D is a flowchart illustrating an example of access-
ing memory. The method begins at step 768 where a process-
ing module (e.g., of a distributed storage and task (DST)
execution unit) receives a slice access request that includes a
slice name. The method continues at step 770 where the
processing module identifies a container based on the slice
name. The identifying may be based on at least one of a
container identifier (ID) table lookup to produce a container

US 9,292,212 B2

63

1D table based on the slice name and extracting the container
ID from the slice name (e.g., from a container ID field). The
method continues at step 772 where the processing module
performs a deterministic function on the slice name to pro-
duce an index into a container table. The deterministic func-
tion includes at least one of a mathematical deterministic
function, a hash function, a hash-based message authentica-
tion code function, and a masked generating function (MGF).
The method continues at step 774 where the processing mod-
ule extracts a container offset corresponding to an entry of the
container table utilizing the index into the container table. The
method continues at step 776 where the processing module
accesses the container utilizing extracting offset. The access-
ing includes combining the container access with a storage
location associated with the container to reduce an access
address and accessing the container at the access address.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be
used herein, the term(s) “operably coupled to”, “coupled to”,
and/or “coupling” includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., anitem includes, but is not limited to, a component,
an element, a circuit, and/or a module) where, for indirect
coupling, the intervening item does not modify the informa-
tion of a signal but may adjust its current level, voltage level,
and/or power level. As may further be used herein, inferred
coupling (i.e., where one element is coupled to another ele-
ment by inference) includes direct and indirect coupling
between two items in the same manner as “coupled to”. As
may even further be used herein, the term “operable to” or
“operably coupled to” indicates that an item includes one or
more of power connections, input(s), output(s), etc., to per-
form, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, and/or “processing unit” may be a
single processing device or a plurality of processing devices.
Such a processing device may be a microprocessor, micro-
controller, digital signal processor, microcomputer, central
processing unit, field programmable gate array, program-
mable logic device, state machine, logic circuitry, analog
circuitry, digital circuitry, and/or any device that manipulates
signals (analog and/or digital) based on hard coding of the
circuitry and/or operational instructions. The processing
module, module, processing circuit, and/or processing unit
may be, or further include, memory and/or an integrated
memory element, which may be a single memory device, a
plurality of memory devices, and/or embedded circuitry of
another processing module, module, processing circuit, and/

10

15

20

25

30

35

40

45

50

55

60

65

64

or processing unit. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-vola-
tile memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital informa-
tion. Note that if the processing module, module, processing
circuit, and/or processing unit includes more than one pro-
cessing device, the processing devices may be centrally
located (e.g., directly coupled together via a wired and/or
wireless bus structure) or may be distributedly located (e.g.,
cloud computing via indirect coupling via a local area net-
work and/or a wide area network). Further note that if the
processing module, module, processing circuit, and/or pro-
cessing unit implements one or more of its functions via a
state machine, analog circuitry, digital circuitry, and/or logic
circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element may store,
and the processing module, module, processing circuit, and/
or processing unit executes, hard coded and/or operational
instructions corresponding to at least some of the steps and/or
functions illustrated in one or more of the Figures. Such a
memory device or memory element can be included in an
article of manufacture.

The present invention has been described above with the
aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these functional
building blocks have been arbitrarily defined for convenience
of description. Alternate boundaries could be defined as long
as the certain significant functions are appropriately per-
formed. Similarly, flow diagram blocks may also have been
arbitrarily defined herein to illustrate certain significant func-
tionality. To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claimed invention. One of average skill in the art
will also recognize that the functional building blocks, and
other illustrative blocks, modules and components herein,
can be implemented as illustrated or by discrete components,
application specific integrated circuits, processors executing
appropriate software and the like or any combination thereof.

The present invention may have also been described, at
least in part, in terms of one or more embodiments. An
embodiment of the present invention is used herein to illus-
trate the present invention, an aspect thereof, a feature
thereof, a concept thereof, and/or an example therecof. A
physical embodiment of an apparatus, an article of manufac-
ture, a machine, and/or of a process that embodies the present
invention may include one or more of the aspects, features,
concepts, examples, etc. described with reference to one or
more of the embodiments discussed herein. Further, from
figure to figure, the embodiments may incorporate the same
or similarly named functions, steps, modules, etc. that may
use the same or different reference numbers and, as such, the
functions, steps, modules, etc. may be the same or similar
functions, steps, modules, etc. or different ones.

US 9,292,212 B2

65

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time or
discrete time, and single-ended or differential. For instance, if
a signal path is shown as a single-ended path, it also repre-
sents a differential signal path. Similarly, if a signal path is
shown as a differential path, it also represents a single-ended
signal path. While one or more particular architectures are
described herein, other architectures can likewise be imple-

5

mented that use one or more data buses not expressly shown, 10

direct connectivity between elements, and/or indirect cou-
pling between other elements as recognized by one of average
skill in the art.

The term “module” is used in the description of the various
embodiments of the present invention. A module includes a
processing module, a functional block, hardware, and/or soft-
ware stored on memory for performing one or more functions
as may be described herein. Note that, if the module is imple-
mented via hardware, the hardware may operate indepen-
dently and/or in conjunction software and/or firmware. As
used herein, a module may contain one or more sub-modules,
each of which may be one or more modules.

While particular combinations of various functions and
features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.

What is claimed is:
1. A method for execution by a processing module of one or
more computing devices, the method comprises:
detecting, in accordance with a rebuilding process, a stor-
age error of an encoded data slice stored in a storage
node of a dispersed storage network (DSN);
identifying the encoded data slice for rebuilding;
identifying one or more storage traits associated with the
encoded data slice;
identifying encoded data slices having at least one storage
trait in common with the one or more storage traits of the
encoded data slice to produce identified encoded data
slices;
prioritizing, within the rebuilding process, storage error
detection analysis of the identified encoded data slices
over other encoded data slices stored in the DSN; and
when a storage error is detected for one of the identified
encoded data slices, identifying the one of the identified
encoded data slices for rebuilding.
2. The method of claim 1, wherein the rebuilding process
comprises:
scanning addresses of the DSN;
identifying the storage node in accordance with the scan-
ning of the addresses of the DSN;
sending a rebuilding feedback request to the storage node;
receiving a rebuilding feedback response from the storage
node, wherein the rebuilding feedback response
includes information that identifies encoded data slices
stored in the storage node;
testing validity of the encoded data slices identified by the
storage node based on the rebuilding feedback response
and comparative encoded data slice information; and
when the comparative encoded data slice information for
the encoded data slice indicates a validity issue, identi-
fying the encoded data slice as having the storage error.
3. The method of claim 1, wherein the prioritizing the
storage error detection analysis of the identified encoded data
slices comprises:

20

25

30

35

40

45

50

66

pausing scanning addresses of the DSN;

identifying addresses of the encoded data slices having at
least one storage trait in common with the one or more
storage traits of the encoded data slice; and

sending rebuilding feedback request to storage nodes of the

DSN storing the encoded data slices based on the
addresses of the encoded data slices.

4. The method of claim 1, wherein a storage trait of the
storage traits comprises one or more of:

a write timeframe;

a writing entity identifier;

a data owner identifier;

a vault identifier;

previous rebuilding operations;

a common network connection;

a common network path; and

an address being in an address range.

5. The method of claim 1, wherein the identifying the
encoded data slices having at the least one storage trait in
common with the one or more storage traits of the encoded
data slice comprises:

identifying first priority encoded data slices of the identi-

fied encoded data slices that have more than one storage
trait in common with the one or more storage traits of the
encoded data slice; and
identifying second priority encoded data slices of the iden-
tified encoded data slices that have one storage trait in
common with the one or more storage traits of the
encoded data slice, wherein the first priority encoded
data slices have a higher priority than the second priority
encoded data slices.
6. The method of claim 1 further comprises:
when the storage error is detected for the one of the iden-
tified encoded data slices, determining storage traits for
the one of the identified encoded data slices;

generating updated storage traits based on the storage traits
for the one of the identified encoded data slices and the
one or more storage traits of the encoded data slice;

adjusting the identifying the encoded data slices based on
the updated storage traits to produce updated identified
encoded data slices; and

prioritizing, within the rebuilding process, storage error

detection analysis of the updated identified encoded data
slices.

7. The method of claim 1 further comprises:

facilitating rebuilding of the encoded data slice; and

facilitating rebuilding of the one of the identified encoded

data slices.
8. A method for execution by a processing module of one or
more computing devices, the method comprises:
determining common storage traits of encoded data slices
stored in a dispersed storage network (DSN) to produce
groups of common storage trait encoded data slices;

executing storage error detection analysis on a sampling of
encoded data slices of one of the groups of common
storage trait encoded data slices;

when the sampling of the encoded data slices passes the

storage error detection analysis, executing the storage
error detection analysis on another sampling of encoded
data slices of another one of the groups of common
storage trait encoded data slices; and

when an encoded data slice of the sampling of encoded data

slices has a detected storage error, executing the storage
error detection analysis on a substantial number of the
encoded data slices of the one of the groups of common
storage trait encoded data slices.

US 9,292,212 B2

67

9. The method of claim 8, wherein a storage trait of the
storage traits comprises one or more of:

a write timeframe;

a writing entity identifier;

a data owner identifier; 5

a vault identifier;

previous rebuilding operations;

a common network connection;

a common network path; and

an address being in an address range.

10. The method of claim 8, wherein the executing the
storage error detection analysis on the sampling of encoded
data slices comprises:

sending a rebuilding feedback request to one or more stor-

age nodes of the DSN storing the sampling of the
encoded data slices;

receiving rebuilding feedback responses from the one or

more storage nodes, wherein one of the rebuilding feed-
back responses includes storage information regarding
the encoded data slice;
testing validity of the sampling of the encoded data slices
based on the one of the rebuilding feedback responses
and comparative encoded data slice information; and

when the comparative encoded data slice information for
the encoded data slice indicates a validity issue, identi-
fying the encoded data slice as having the detected stor-
age error.

11. A dispersed storage (DS) module comprises:

a first module, when operable within a computing device,

causes the computing device to:

detect, inaccordance with a rebuilding process, a storage
error of an encoded data slice stored in a storage node
of a dispersed storage network (DSN); and

identify the encoded data slice for rebuilding;

a second module, when operable within the computing

device, causes the computing device to:

identify one or more storage traits associated with the
encoded data slice; and

identify encoded data slices having at least one storage
trait in common with the one or more storage traits of
the encoded data slice to produce identified encoded
data slices; and

a third module, when operable within the computing

device, causes the computing device to:

prioritize, within the rebuilding process, storage error
detection analysis of the identified encoded data slices
over other encoded data slices stored in the DSN; and

when a storage error is detected for one of the identified
encoded data slices, identify the one of the identified
encoded data slices for rebuilding.

12. The DS module of claim 11, wherein the rebuilding
process comprises:

the first module further functions to:

scan addresses of the DSN;

identify the storage node in accordance with the scan-
ning of the addresses of the DSN;

sending a rebuilding feedback request to the storage
node;

receive a rebuilding feedback response from the storage
node, wherein the rebuilding feedback response
includes information that identifies encoded data
slices stored in the storage node;

test validity of the encoded data slices identified by the
storage node based on the rebuilding feedback
response and comparative encoded data slice infor-
mation; and

20

30

35

40

45

55

68

when the comparative encoded data slice information
for the encoded data slice indicates a validity issue,
identify the encoded data slice as having the storage
error.

13. The DS module of claim 11, wherein the third module
functions to prioritize the storage error detection analysis of
the identified encoded data slices by:

pausing scanning addresses of the DSN;

identifying addresses of the encoded data slices having at

least one storage trait in common with the one or more
storage traits of the encoded data slice; and

sending rebuilding feedback request to storage nodes of the

DSN storing the encoded data slices based on the
addresses of the encoded data slices.

14. The DS module of claim 11, wherein a storage trait of
the storage traits comprises one or more of:

a write timeframe;

a writing entity identifier;

a data owner identifier;

a vault identifier;

previous rebuilding operations;

a common network connection;

a common network path; and

an address being in an address range.

15. The DS module of claim 11, wherein the second mod-
ule functions to identify the encoded data slices having at the
least one storage trait in common with the one or more storage
traits of the encoded data slice by:

identifying first priority encoded data slices of the identi-

fied encoded data slices that have more than one storage
trait in common with the one or more storage traits of the
encoded data slice; and

identifying second priority encoded data slices of the iden-

tified encoded data slices that have one storage trait in
common with the one or more storage traits of the
encoded data slice, wherein the first priority encoded
data slices have a higher priority than the second priority
encoded data slices.

16. The DS module of claim 11 further comprises:

the second module further functions to:

when the storage error is detected for the one of the
identified encoded data slices, determine storage
traits for the one of the identified encoded data slices;

generate updated storage traits based on the storage
traits for the one of the identified encoded data slices
and the one or more storage traits of the encoded data
slice; and

adjust the identifying the encoded data slices based on
the updated storage traits to produce updated identi-
fied encoded data slices; and

the third module further functions to:

prioritize, within the rebuilding process, storage error
detection analysis of the updated identified encoded
data slices.

17. The DS module of claim 11 further comprises:

the third module further functions to:

facilitate rebuilding of the encoded data slice; and
facilitate rebuilding of the one of the identified encoded
data slices.

18. A dispersed storage (DS) module comprises:

a first module, when operable within a computing device,

causes the computing device to:

determine common storage traits of encoded data slices
stored in a dispersed storage network (DSN) to pro-
duce groups of common storage trait encoded data
slices; and

US 9,292,212 B2

69

a second module, when operable within the computing
device, causes the computing device to:
execute storage error detection analysis on a sampling of
encoded data slices of one of the groups of common
storage trait encoded data slices;
when the sampling of the encoded data slices passes the
storage error detection analysis, execute the storage
error detection analysis on another sampling of
encoded data slices of another one of the groups of
common storage trait encoded data slices; and
when an encoded data slice of the sampling of encoded
data slices has a detected storage error, execute the
storage error detection analysis on a substantial num-
ber of the encoded data slices of the one of the groups
of common storage trait encoded data slices.
19. The DS module of claim 18, wherein a storage trait of
the storage traits comprises one or more of:
a write timeframe;
a writing entity identifier;
a data owner identifier;
a vault identifier;
previous rebuilding operations;

70

a common network connection;

a common network path; and

an address being in an address range.

20. The DS module of claim 18, wherein the second mod-

5 ule executes the storage error detection analysis on the sam-

pling of encoded data slices by:

sending a rebuilding feedback request to one or more stor-
age nodes of the DSN storing the sampling of the
encoded data slices;

receiving rebuilding feedback responses from the one or
more storage nodes, wherein one of the rebuilding feed-
back responses includes storage information regarding
the encoded data slice;

testing validity of the sampling of the encoded data slices
based on the one of the rebuilding feedback responses
and comparative encoded data slice information; and

when the comparative encoded data slice information for
the encoded data slice indicates a validity issue, identi-
fying the encoded data slice as having the detected stor-
age error.

